

# Simian varicella virus DNA is present and transcribed months after experimental infection of adult African green monkeys

Tiffany M White,<sup>1,2</sup> Ravi Mahalingam,<sup>1</sup> Vicki Traina-Dorge,<sup>3</sup> and Donald H Gilden<sup>1,2</sup>

Departments of <sup>1</sup>Neurology and <sup>2</sup>Microbiology, University of Colorado Health Sciences Center, Denver, Colorado, USA and <sup>3</sup>Department of Microbiology, Tulane Regional Primate Research Center, Covington, Louisiana, USA

To study the pathogenesis of simian varicella virus (SVV) infection in its natural primate host, we inoculated adult SVV-seronegative African green monkeys intratracheally with  $10^3-10^4$  PFU of SVV, sacrificed them 11 days, 2, 5, 10, and 12 months postinfection (p.i.), and examined lung, liver, and ganglia for SVV DNA and RNA. PCR analysis revealed SVV DNA in ganglia and viscera at 11 days and 2, 5, and 10 months p.i. Similarly, SVV transcripts corresponding to immediate early (IE), putative early (E), and late (L) SVV open-reading frames (ORFs) were found in liver, lung, and ganglia of most monkeys at multiple intervals for the 12-month study period. SVV-specific antigens were detected in ganglia and liver during acute varicella, but not in ganglia 12 months p.i. Analysis of control tissue (ganglia, lung, and liver) from uninfected SVV-seronegative adult African green monkeys did not reveal SVV DNA, SVV RNA, SVV-specific antigen, or varicella-specific pathological changes. Overall, intratracheal inoculation of SVV in African green monkeys resulted in the presence of viral DNA and transcription of multiple viral genes in many tissues for months after experimental infection. Journal of NeuroVirology (2002) 8, 191-203.

Keyword: experimental varicella infection

### Introduction

Simian varicella virus (SVV) is an alphaherpesvirus that produces a naturally occurring exanthematous disease of nonhuman primates that mimics human varicella (Clarkson *et al*, 1967; Soike *et al*, 1984; Padovan and Cantrell, 1986). Further, like varicella zoster virus (VZV), SVV remains in ganglia at multiple levels of the neuraxis for the life of the host (Mahalingam *et al*, 1990, 1991). Months after primary infection, most, if not all, of the SVV genome is present (Mahalingam *et al*, 1992), and the SVV open reading frame (ORF) 21 is transcribed (Clarke *et al*, 1996).

The SVV and VZV genomes share considerable nucleotide sequence homology (Gray and Oakes, 1984). SVV ORFs corresponding to VZV immediate early (IE) genes 4, 62, and 63, which encode regulatory proteins (Felser *et al*, 1988; Jackers *et al*, 1992; Defechereux *et al*, 1993), have been identified (Clarke *et al*, 1993; Gray *et al*, 1995, 2001), as well as ORFs homologous to VZV genes 21, 28, and 29, which encode putative early (E) proteins (Kinchington *et al*, 1988; Bergen *et al*, 1990; Mahalingam *et al*, 1998). A homologue of VZV gene 40, which encodes the late (L) major viral capsid protein (Davison and Scott, 1986), is also present in SVV.

To study the pathogenesis of SVV in its natural primate host, we inoculated 12 adult African green monkeys intratracheally with SVV (Figure 1).

Address correspondence to Dr Donald H Gilden, Department of Neurology, Mail Stop B182, University of Colorado Health Sciences Center, 4200 East 9th Ave, Denver, CO 80262, USA. E-mail: don.gilden@uchsc.edu

This work was supported in part by Public Health Service grants NS 32623 and AG 06127 from the National Institutes of Health. Tiffany White was supported by Public Health Service grant NS 07321 from the National Institutes of Health. We thank Marina Hoffman for editorial review and Cathy Allen for preparing the manuscript.

Received 7 December 2001; revised 14 January 2002; accepted 20 February 2002.



Figure 1 Outline of protocol used to detect SVV DNA and SVV-specific transcripts in multiple tissues from adult African green monkeys inoculated intratracheally with  $10^3-10^4$  PFU of SVV.

To obtain as many monkeys as possible, we included three that had been treated with an experimental non-nucleoside antiviral drug; one monkey that had been treated with interferon- $\beta$  before and during acute varicella; and four monkeys that had been treated with oral famciclovir daily for 7 days at 3 months and 4 months after experimental inoculation. Trigeminal ganglia (TG) and dorsal root ganglia (DRG) as well as lung and liver were analyzed at various times for viral DNA, RNA, and antigen.

### Materials and methods

### Cells and virus

African green monkey kidney (BSC-1) cells and SVVinfected BSC-1 cells (SVV-BSC-1) were propagated as described (White *et al*, 1997).

Experimental inoculation of African green monkeys Adult African green monkeys (M1–M12) were inoculated intratracheally with  $10^3-10^4$  PFU of SVV (Figure 1). Table 1 summarizes the inoculum dose, antiviral treatment, viremia, and severity in each monkey. Viremia developed 5 to 7 days p.i. and rash developed 7 to 11 days p.i. Monkey M1 and M2 died 10 and 11 days p.i., respectively. Monkeys M3– M12 were sacrificed 2 (M3–M5), 5 (M6–M8), 10 (M9– M11), or 12 (M12) months p.i. Monkeys M3–M12 did not have varicella or zoster when sacrificed. Animals M2–M5 received no antiviral treatment. Monkey M1 was treated with  $5 \times 10^3$  IU/kg of interferon- $\beta$  on days 1 and 6 p.i. Monkeys M6–M12 received 100 mg of oral famciclovir daily for 7 days at 3 and 4 months p.i. In addition, monkeys M6, M11, and M12 were given 20 mg or 40 mg of an experimental antiviral drug (Wyeth-Ayerst, Radnor, PA) twice daily for 10 days starting 48 h p.i. The experimental drug is a small hydrophobic non-nucleoside molecule with an approximate molecular weight of 500 Da. At the time of sacrifice, samples of lung, liver, and pooled TG and DRG from individual monkeys were quick-frozen in liquid nitrogen and stored at  $-70^{\circ}$ C.

### DNA and RNA extraction

Frozen viscera and ganglia were pulverized with a mortar and pestle in the presence of liquid nitrogen. DNA was extracted from tissues using a tissue kit (QIAGEN, Inc, Santa Clarita, CA), and total RNA was extracted using TRIzol (Life Technologies, Inc, Gaithersburg, MD). Since DRG from monkey M3 were attached to the spinal cord, the tissues were processed together. Poly(A<sup>+</sup>) RNA samples were prepared from total RNA extracted from lung and total RNA extracted from spinal cord/DRG from monkey M3 using an mRNA separator kit (Clontech, Palo Alto, CA).

### In vitro transcription

The pSP64 Poly(A) vector containing the green fluorescent protein (GFP) gene was linearized using

 Table 1
 Viremia and rash in adult African green monkeys

 experimentally infected with SVV by intratracheal inoculation

| Monkey | Sacrificed<br>(time p.i.) | Inoculum<br>(PFU)   | Antiviral        | Viremia <sup>f</sup> | <i>Rash</i> <sup>i</sup> |
|--------|---------------------------|---------------------|------------------|----------------------|--------------------------|
| M1     | 10 days <sup>a</sup>      | $2.7 \times 10^{3}$ | ves <sup>b</sup> | TNTC                 | 4+                       |
| M2     | 11 days <sup>a</sup>      | $2.0 \times 10^4$   | no               | NA <sup>h</sup>      | 3+                       |
| M3     | 2 mo                      | $2.0 \times 10^{4}$ | no               | NA                   | 2+                       |
| M4     | 2 mo                      | $1.5 \times 10^{3}$ | no               | 13 PFU               | 1+                       |
| M5     | 2 mo                      | $1.5 	imes 10^3$    | no               | 9 PFU                | 2+                       |
| M6     | 5 mo                      | $4.0 	imes 10^3$    | ves <sup>c</sup> | 660 PFU              | 3+                       |
| M7     | 5 mo                      | $4.0 	imes 10^3$    | $ves^d$          | 690 PFU              | 2 +                      |
| M8     | 5 mo                      | $4.0 	imes 10^3$    | $ves^d$          | 1550 PFU             | 2+                       |
| M9     | 10 mo                     | $4.0 	imes 10^3$    | $ves^d$          | TNTC                 | 2 +                      |
| M10    | 10 mo                     | $4.0 	imes 10^3$    | $ves^d$          | 285 PFU              | 3 +                      |
| M11    | 10 mo                     | $4.0 	imes 10^3$    | vesc             | 945 PFU              | 3+                       |
| M12    | 12 mo                     | $4.0 	imes 10^3$    | yes <sup>e</sup> | 1550 PFU             | 2+                       |
|        |                           |                     |                  |                      |                          |

<sup>a</sup>Found dead at indicated times.

 $^{b}5 \times 10^{3}$  IU/kg of interferon- $\beta$  on days 1 and 6 p.i.

<sup>c</sup>20 mg of an experimental antiviral drug twice daily for 10 days (started 48 h p.i.) and 100 mg of famciclovir daily for 7 days at 3 months and 4 months p.i.

<sup>d</sup> 100 mg of famciclovir daily for 7 days at 3 months and 4 months p.i.

<sup>6</sup>40 mg of experimental antiviral drug twice daily for 10 days (started 48 h p.i.) and 100 mg of famciclovir daily for 7 days, at 3 months and 4 months p.i.

<sup>f</sup>Viremia determined by the detection of a varicella-specific cytopathic in Vero cells after cocultivation with blood mononuclear cells from day 7 p.i.

<sup>g</sup>TNTC = plaques too numerous to count.

 $^{h}NA = not available.$ 

<sup>i</sup>Severity of rash determined by Dr. Kenneth Soike (Tulane Regional Primate Research Center) based on the extent of rash and hemorrhagic vesicles.

VspI restriction enzyme, and 400 ng of DNA were transcribed *in vitro* using SP6 RNA polymerase. RNA was cleaned using the OIAGEN RNA cleanup kit per the manufacturer's instructions and eluted using 50  $\mu$ l of RNase-free ddH<sub>2</sub>O.

#### PCR amplification of actin and SVV DNA

Based on published SVV DNA sequences (Clarke et al, 1993, 1996; Fletcher and Gray, 1993) oligonucleotide primers were selected using DNASIS software (Hitachi Software Engineering America Ltd, South San Francisco, CA) (Table 2). Table 3 lists the primer sets used in the primary and nested PCR to amplify actin and SVV ORF 4-, 21-, and 63-specific sequences, and the sizes of nested PCR products. For the primary PCR,  $100-\mu$ l reactions contained 0.1–0.5  $\mu$ g DNA or total RNA in 50 mM KCl, 10 mM Tris-HCl (pH 8.3), 200  $\mu$ M each of dATP, dCTP, dTTP, and dGTP, 1.5 mM or 3 mM MgCl<sub>2</sub>, 0.2  $\mu$ M of each primer, and 2.5 units of Perkin-Elmer Taq DNA polymerase (Foster City, CA). Samples were overlaid with mineral oil, heated to 80°C for 5 min, and cycled 35 times in an automated DNA thermal cycler (Perkin-Elmer) programmed as follows: denaturation at 94°C for 30 s; annealing at 55°C for 30 s (60°C for SVV ORF 40 primer set); and polymerization at 72°C for 1 min, extended in the final cycle to 7 min. Nested

PCR conditions were the same as before, using 5  $\mu$ l of a 1:20 dilution of the primary reaction product.

### RT-PCR amplification of GFP-, actin-,

and SVV-specific transcripts

GFP, actin, and SVV ORF 4, 21, 28, 29, 40, 62, and 63 transcripts were detected by nested RT-PCR followed by Southern blot hybridization. Total RNA extracted from lung, liver, and ganglia and GFP in vitro transcription reaction products were treated with RQ1 RNase-free DNase (Promega, Madison, WI) until no amplifiable GFP or SVV DNA was detected. To determine the sensitivity of the RT-PCR reaction, 3  $\mu$ g of DNased total ganglionic RNA was mixed with 1, 10, 100, 1000, or 10000 copies of GFP *in vitro* transcripts before incubation with AMV reverse transcriptase (+RT) (Promega). For all other reactions, 3  $\mu$ g of DNase-treated total RNA or 2  $\mu$ g of poly(A)<sup>+</sup>-selected RNA (M3) was incubated with AMV RT (Promega). Negative controls were provided by omitting RT from the reaction. cDNA synthesis for GFP was primed using the oligonucleotide primer LU-T7-oligo(dT) (Table 2), and all other cDNA synthesis was primed using the oligonucleotide primer RACE-oligo(dT) (Table 2). DNase-treated total RNA (3  $\mu$ g) or poly(A)<sup>+</sup>selected RNA (2  $\mu$ g) was mixed with 0.3  $\mu$ g RACEoligo(dT) and double-distilled (dd) H<sub>2</sub>O to a volume of 17  $\mu$ l, and heated to 65°C for 5 min. After cooling the mixture to 43°C, 2  $\mu$ l of 10 mM dNTPs, 0.5  $\mu$ l of bovine serum albumin (10 mg/ml), 5  $\mu$ l of 5 × RT reaction buffer (Promega), and 10 units of AMV RT or nuclease-free H<sub>2</sub>O were added to a final volume of 25  $\mu$ l. Reactions were incubated at 43°C for 2 h, and RT was inactivated by incubating samples at 95°C for 5 min.

After reverse transcription, nuclease-free  $H_2O$ (75  $\mu$ l) was added to each RT reaction to a final volume of 100  $\mu$ l. For each primary PCR, 5–10  $\mu$ l of the RT product was used to amplify GFP, actin, and SVV ORF 4-, 21-, 28-, 29-, 40-, 62-, and 63-specific cDNAs. Primary and nested PCRs were performed as described previously. The sequences for the GFP, actin and SVV ORF 4-, 21-, 28-, 29-, 40-, 62-, and 63-specific primers are shown in Table 2. The actin RT-PCR was not nested. Advantage-GC 2 polymerase (Clontech) was used to amplify SVV ORF 62 cDNAs. The primary SVV ORF 62 PCR reaction included 5-10  $\mu$ l of diluted RT sample, 10  $\mu$ l 5× GC 2 PCR buffer, 10  $\mu$ l GC-Melt, 2  $\mu$ l 10 mM dNTPs, 2  $\mu$ l of each primer (5  $\mu$ M stock), 1  $\mu$ l 50× Advantage-GC 2 polymerase mix, and ddH<sub>2</sub>O in a final volume of 50  $\mu$ l. Samples were overlaid with mineral oil, heated to 95°C for 1 min, and cycled 35 times in an automated DNA thermal cycler (Perkin-Elmer) programmed as follows: denaturation at 94°C for 30 s; annealing at 55°C for 30 s; polymerization at 68°C for 1 min, extended in the final cycle to 7 min. Actin amplification was performed on cDNA reverse-transcribed from lung and liver RNA.

 Table 2
 Oligonucleotides used in this study

| ORF 44P1ACTGGAATCTGCAGAGGAA4639°4P2TGATGGTGTCTCTCAGCAGACAA41764P3GTCTTTAACCGCCTCATG41974P3TAATACACCGCCTTAACAGA4281Phi4TAATACACCGCCTTAACAGA4281Phi4TAATACACCGCCTTACAGAA3168621P2CGACGCTCTGTTACAACGAAAGTCGT3198521P3AAGCAGOGCAATGGTAAAAAGTCGT3198521P4TGCACCCTCTGTTACAATCG3198121P5AAGCAGOCGCATGGTAACAAAGTCGT3198121P5AAGCAGCCCTCTGTTACAATCG3198121P5AAGCAGCGCCTCTGTTACAATCGC3198121P6AAGCAGCCCCCTCTGTTACAATCGC3198121P7AAGCAGCGCCGCTCTGTACAAACAGGTG3193021P8TAACATTCAGCGATGCCAA34222PA121BTAACATTCACGGATGTCCAA34222PA228CGACCTCTCTCTCTCCCATACAGCGG3450021P7AACCGTTCCCCATACATCGCGACT3422PA28CCAACCCAGCAGAGTGTCCAA3422PA29CGACCTCTCTCTCCTCTCCCATAC3450028P3CCAACCCAGGAGTGTCCAAA342228P4ACCCCTCTCAAGCAACGCGACT3450028P3CCAACCCAGCAGAATGTAAC3452028P4ACCCCTCTCAAGCAGCAGCAATGTAC3455028P3CCAACCCAGCAGCAACACC3455028P4CCCTTACAGCAGCGCTCTCTCTCTCTCTCT3465028P3CCAACCCAGCCCAACCACCACC3565028P4CCCTTTACAGCGCTCTCTCTCTCTCTCTCT3465028P5CCCAACCCAGCCGCAACACCACCCCCAACA3552929P4CTACTAGCGCTCCCAACCCCCCACCACCACCCCCCAC                                                                                                                                                                                                                               | Gene           | Name            | Sequence (5' to 3')                                           | Location       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|---------------------------------------------------------------|----------------|
| 4P2     TGATGGTCTGTGTCAGGAGAA     4176       4P3     GTCGTGTGATAGGCGCTGATG     4497       4P4     TAATACACCGGCCTTACAGAA     4265       Phb4     TTATCCCGCTAACGCAAACAG     4265       21P2     GTCGCTGAAACACAGC     31667       21P3     AAGCACGGGAATGGTAGCACGTAAACAGC     31897       21P4     TGCACGTAAAACAATCGC     31897       21P4     GCACACTCACGGGAATGGTAACTTGC     31891       21P4     GCACACTCACGGGAATGGATAA     34079       21P5     ATGCGGCGGAATGGATAA     34079       21P6     GTACATCUCAGTAACACTTGC     34390       21P7     AAGGTTCGCGAATGGATAA     34222       Pho21B     TAACATTCGCGGATGGATAA     34222       Pho21B     TAACATTCGCGAATGGATAA     34222       CRF 28     28P1     TAACGTCGTCGCACAGCGA     34222       28P3     CGACTGTGTGTGCGCAGTGCAA     48476       28P3     CGACTGTGTTAAGGCCATTGC     48765       28P3     CGACTTGTGTGTGCGCAGTGCA     48765       28P3     CGACTTGTGTGTGCACGCAGTGA     48765       28P3     CGACTTGTGTGTGTGCACGCATGGA     48765       28P3     CGACTTGTGTGTGTGCACGCATGGA     48765       28P3     CGACTTGTGTGTGTGCACGCATGGA     48765       28P3     CGACTTGTGTGTGTGAACTGCCATGGA     48765                                                                                          | ORF 4          | 4P1             | ACTGGAATCTGCAGACGAA                                           | 4639ª          |
| HP3CTCTCTTCATACCGCGTCAATG44974P4TAATACACGCGCCTTCACAAGA4265Pb4TTATCCACCGCCTAAAACAG426521P2CTCGCCTAAAACAGCACCGCACTCAGA3196521P3AAGCACGGCAATCGACACATCGCA3195721P4TCGCACCTGGCTAAACATCGCACAACTCCTG3198521P3AAGCACGGCAATCGACAACTCCTG3198521P4TCGCACCTGTGAAAATCGCACACTCCTG3439021P5ATCGCCCTGGCAACATCGCACACATCGC3439021P6CTACATCCACGGCTTTCGCACAACTCC3439021P7AACCTTCCCCATACATCAGCGTG34422221P6CTACATCCCCCATCACATCGC3439021P7AACCTTCCCCATACATCAGCGTG34422220R723P6CTACATCCACGATGCCAA3422220R723P1TAATCGATCTCTCCCCACACATCC3439220R723P2CCAACCAACGACCTTCCCCACACA3422220R723P3CCAACCAACGACCTTCCCCACA3422220R723P4ACCCCTCTCACATCGCACA3422220R723P3CCAACCAACGACCATTCCCACACACA3491020P4CCTATACACACGCCCTCCCCCCTCTTCTCTCTCT3493620R729P3CCATCACCACCCCCCCCACATCA3471020P4CCTATACACACGCCCCTCCCTCTTCTCTCTCTCTCTCTCT                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | 4P2             | TGATGGTGTGTCTCAGGAACA                                         | 4176           |
| Ph4     TAATACACCGCCCTTACAAGA     4265       Prb4     TTATCCCCACGTAAAACAACAG     4346       ORF 21     21P1     CCCACTTCCCCTAAACTACAACGA     4346       21P3     AAGACAGGGAATGGTAGAAACTCGCT     31957       21P4     TCCACGCGTGTATAGAAATCGC     31851       21P4     TCCACGCGGTGTGTAGAAACATCGC     31950       21P5     ATCCCCGCGGGATCGAATAACGCTACA     34470       21P6     GTACATCCCAGTACATTCC     34390       21P6     ATCCCCACTCCACGTCAAACAACTCC     34390       21P6     ATCCCCCGTGGAATCGCACACGCGT     34322       Pb21B     TAACATTCCCCATCACAGGTC     34322       Pb21B     TAACATTCCCCCACTTCCCACCAC     34222       ORF 28     28P1     TAACATCTCTCCTCCCCACTTCCACACA     48476       28P2     CGACTTGTTCTCTCTCTCTCTCT     49619       ORF 29     29P1     CTATCACGCACTGCAACGACACCACCACGACG     48019       ORF 29     29P2     CTATCACGCACTCCATCC     54950       29P4     CCCTTAACTCTCCACCTCCATCC     54950       29P2     CCTATACCACCACCACACACACACACCACC     5529       ORF 61     40P1     CTACCTCCACCTCCATCCC     5529       ORF 62     62P1     CCTTACACTCACACCACCACCC     5529       ORF 62     62P2     CCACCCCCCCTTACACTCCCATCCC     5529       ORF 63                                                                  |                | 4P3             | GTCTGTTGATACGGCGTGATG                                         | 4497           |
| Phb     TIATCCCCACGTAAAACAG     4346       ORF 21     21P1     CCCACTTCGCTAAAACAGCACTTGGA     31686       21P2     GTGCGTAAAAGCATCGCT     31785       21P3     AAGCACGGGAATGGACAAAGTCGTG     31896       Phb21A     GCCACCTGTGTAGCAAAGTCGTG     31896       21P5     ATGCGCGTGGAATCGACAACTCG     31891       21P6     GTACATCCACGGGTTGCACAA     34079       21P6     GTACATCCACGGATGGAACATCGC     34390       21P7     AACGTTCCGCATACATCAGCGTG     34390       21P8     ATTGCGTCACAACAGCCATTCC     34390       21P8     TAATCGATTCATCGACAAGCCATTCC     34322       ORF 28     28P1     TAATCGATTCGTCCACAAGCAGTTGCACA     48222       ORF 28     28P3     CCACTCAACAAGCATTGCACA     48222       ORF 29     29P1     CTACGGTTATACGGACTTGCACA     48360       ORF 29     29P1     CTACGGTATACACGACTATGTGTGTCT     54650       29P3     CCATTACAGCGTTTGCACTGCAATGC     54795       29P4     CATTTACTGGACACAACAATATTA     54710       29P3     CGCTTACAGACGCTCCTCACTCGT     54850       29P4     CATTACTGCACCACAACA     54795       29P3     CGCTTACAGACGCACACCA     54795       29P4     CATTACAGCGCTACTCCACTCGT     54850       00F4     40P1     CTACCACGCCACACACA                                                                       |                | 4P4             | TAATACACCGGCCTTACAAGA                                         | 4265           |
| ORF 21     21P1     CCCACTTCGCCTAAACTTCGA     31666       21P2     GTGGCGTAAAGAATGCTACGCT     31957       21P3     AAGACAGGGAATGGTAGAAAGAATGCT     31785       21P4     TCCACCGCGTGTATAGAAATGC     31890       21P5     ATCCCACCGTGGTATAGCAAATGC     34079       21P6     GTACATCCCAGGTACAATTCC     34390       21P6     ATCCCACGTGCAATGCACACGCT     34150       21P6     GTACATCCCAGTACATTCC     34390       21P7     AAGGTTTCCGATACATCACGGTGT     34422       Pb21B     TAACATTCCCGATGCACACGCT     34422       Pb21B     TAACATTCCCCGATGTCCAGCA     44476       28P2     CGAATCTACGCATGTGCGAAT     44876       28P3     CGAACCAACGAAGCTGAAATGGA     48181       28P4     CGATTTACTGTCTCTCTCTGTGTT     49051       28P3     CGCATACGAACGCAAGCAAGCAGCAAGCAGCATATTA     49161       28P4     CGCTTACATCGCATGG     48019       28P2     CGCATACACAAGCAAGCTCCATGG     54950       29P3     CGCTTACGCCCTTAACCACTCGCT     54950       29P4     CGCTTACGACGCACATCACA     54950       29P4     CGCTTACACGCCCTTGCACCACACA     54950       29P4     CGCTTACACGCCCCATGCC     5529       20R4     CGCTTACACGCCCCATACA     75228       20R5     62P1     CTACCCCCCGCATACACACC                                                                      |                | Prb4            | TTATCCCCACGTAAAACAG                                           | 4346           |
| 21P2     CTGCGCTAAAAGAATCGCT     31957       21P3     AAGACACGGCAATCGACGAACTCGTG     31785       21P4     TGCACGCGTGTTAGAATTCG     31891       21P5     ATGCCACTCACGCGTTTGCA     34079       21P6     GTACATCACGCGTTTCCA     34390       21P7     AACGTTCCCGATACACTCACCGCT     34390       21P7     AACGTTTCCCGATACATCAGCTC     34320       21P8     ATTCGTCTCCATACACACGCTC     34322       Pb21B     TAACATTCACGCGATCCACAC     46476       28P2     CCACTTGTTCCTCCTCGTAATG     46019       28P3     CCAACCTAGCGCGCACATTGG     46019       0RF 28     28P1     CTATCAAGGTCGCCAACT     46019       28P2     CATTATACTGCGAACTGCCAAC     46019       0RF 29     29P2     GTATCAAGGTCGCCACTGCCAACT     46019       28P4     CGTTACAAGCTCCCAAC     46019       28P4     CGTATCAAGCTCCCAACA     47953       28P4     CGTATCAAGCTCCCAACA     4795       28P4     CGTATCAAGCTCCAACA     54936       29P2     GTATCAAGCTCCAACACA     5728       40P3     CTAACTACACGCGTTTACAACA     57528       40P3     CTAACTACACACACGCGTACAC     75728       40P3     CTAACTACACACACGCGTCCCAACA     75529       00F62     62P1     CTATCACACACACGCGTCCCACACA     7552                                                                                        | ORF 21         | 21P1            | CGCACTTCGGCTAAACTTGGA                                         | 31666          |
| 21P3     AAGACAGGAATGCTAGAAAGTCCTG     31785       21P4     TGCACGCGTGTTAGCAATTCG     31896       21P5     ATGCGCGTGGTATCGAATTCG     34079       21P5     ATGCGCGTGGATACACTCAGCGTCG     34150       21P6     GTACATCCCAGTACATTCC     344390       21P7     AAGTTCAGGATCAACGAGTG     34150       21P8     ATTTCGTCTATCATAAGCCATCA     34222       Ph21B     TAACATTCACGAGTGCAA     34222       ORF 28     28P1     TAACATTCAGGAGTGCAA     48476       28P2     CGACTTCTCGTCACATC     4867       28P3     CCAACCAACGAAGCAACGAAGCTGCAA     48181       28P4     AGCCTCTGTGAATG     4869       28P3     CCAACGAAGCAAGCAAGCTGCAATTAG     48181       28P4     CGTTAACGTCATGCAAGG     48019       ORF 29     29P1     CTATCAGGAACTGCATTGG     54550       29P3     CGCTTACAGAGCAGCAGCAATTTA     54795       29P3     CGCTTACAGAGCAGCACAATTTA     54795       29P4     CGTTACAGAGCAGCCACATTAG     7528       40P1     CTATCAGGAAACCC     7528       40P2     TTGACTTAGCAGCAGCACACA     7529       QFF 40     4091     CTATACGTCAACCCC     7528       40P3     CCTATACAGCAGCACCCGTACA     7528       40P4     CGAGTAGTCACACCCCCTCCCT     10459   <                                                                                             |                | 21P2            | GTGGCGTAAAAGAATCGCT                                           | 31957          |
| 21P4TICACGCTGGTTAGAATTCG31896121P5ATGCGCGTGGAATGGATAA3407921P5GTACACCATCCCGATACATCG3439021P6GTACATCCCCAGTACATTCC3439021P7AACGTTTCCGATACATCAGGTG3432221P8ATTCGTCTATCATAAGCCATCT3432221P8TAACATTCACGGATGCCAA3422221P3CGACTTGTCGCAGTGCCAA3422221P3CGACTTGTTCCTGCGAGTGCCAGA4801628P2CGACTTGTTCCTGCTGTGTGTC4796528P3CCAACCAACGAAGTGCAAA4818128P4CGACTCGTAGCATTGGAA4801928P4CGACTCGTAGCTGCGCGCTGTGTGTC5465029P3CGCTTACCGGACTGCTGCGCGATTCCTTGTGT5493629P4CGTTACAGGTGGTCGCTCGTGATTCTTCTGTGT5493629P3CGCTTACCGGACTGCGACGACAATTTTA5471029P4CGTTATACAGGACAGCAGCA5479529P3CGTTACAGAGCAGCACAC5479529P4CGTATCAGAGCAGCACACC552829P3CGTTACAGACGACGACACC7518840P2TIGACTTACGAGCAGCACACC7552840P3CCTATACAGACAGCGCTACC755290RF 6262P1CGACCTGCCCGCTTATAGC10632162P3ATGCGGCTATGCTCCTCGCCCCCT10434162P4GGACGTCGATGTCCTCGCCCCCC1045964P4GGACGCGCATACCCCCCCCCCCAAA11032263P3ACCCGGCCATATCCTCGCCCCCCCCCCAAA11032264P4GCACCCCCCCCGATTAACCCCCCCCCCCCAAA11042964P4GCACCCCCCCCCTATGCTCTCCCCCCCCCCCAAA11042964P4GCACCCCCCCCCTATGCTCCCCC                                                                                                                                                                                                                               |                | 21P3            | AAGACAGGGAATGGTAGAAAGTGCTG                                    | 31785          |
| Ph21A     GACACATCAGCGGTTTGCA     31821       21P5     ATGCGCGTGGAATAA     34079       21P6     GTACATCCCAGTACATTCC     34390       21P6     ATCTTCGCTTACAACATCAGCGTG     34150       21P8     ATTCGTCTATCATACACTCAGCGACTTC     34222       Ph21B     TAACATTCACGAGTACATTCAGCACACA     34222       ORF 28     28P1     TAATGATCTTCTCCCACATTCCACACA     48476       28P3     CCAACCAACGAAGCTGCAA     48181       28P4     ACCCTCTGTAAGTCTTGTGTCC     47951       28P3     CCAACCAACGAAGCTGCAAATAGA     48181       28P4     ACCCTCTGTAAGTCTTGTGTC     49951       28P3     CCAACCAACGACGACGAATTGC     48019       29P3     CTATCAGGTAATGCGCGTATTGC     49936       29P3     CCTACGAGACGACGACAATATTA     54710       29P3     CCTATCAGACGCAGCAACACCA     54850       29P4     CGTATCAGCGGTTTTAGACC     7528       40P3     CCTATCAGACGACGACACA     7528       40P3     CCTATCAGCACGACCACACCA     7528       40P3     CCTATCAGCACGACGACACA     7528       40P3     CCTATCAGCACGACGACACA     7528       40P3     CCTATCAGCACGACGACACA     7528       40P4     TGACCTCCCCCGCCTTAACC     7528       40P3     CCTATCAGCACGACGACACA     7528                                                                                                   |                | 21P4            | TGCACGCTGTGTTAGAATTCG                                         | 31896          |
| 21P5     ATGCGCCTGGAATGGATAA     34079       21P6     GTACATTCC     34390       21P7     AACGTTTCCGATACATCAGGTA     34320       21P8     ATTGCGCATCACATCAGGACTGT     34320       Ph21B     TAACGATTCAGCGATGTCAA     34222       28P2     CGACGTCTCTCCCCCGCACTTC     48476       28P3     CCAACGAAGCAACGACGCAATTC     47805       28P4     ACGCTCTGTAGTCGCACTTCCAGCA     47805       28P3     CCAACGAAGCAGCACGCAAATAGA     48019       0RF 28     29P4     CACGCTCTGTAGTCGCAATTGC     47805       28P4     ACGCTCTGTAGTCGCAATTGG     4650       28P3     CCATTACAGCAGCAACTGCAAGC     48019       0RF 29     29P1     CTACGACGCACTGCAATGG     48019       0RF 29     29P3     CGTTACAACGCGCATTTGG     54550       29P4     CGTATCACAGCAGCAAATTTA     54710       29P3     CGTTACTACAGCAGCAAAC     75728       29P4     CGTATCACAGCAGCACAACC     75829       0RF 40     40P1     CTAACGCGTCGCCACTCACC     75801       40P2     TTGACTTACAGCAGCACAACA     75622       62P4     CCACCCCGATAAACCGCCTCTAAC     75829       0RF 63     63P1     CCACCACGCAGTAACACC     75829       0RF 63     63P1     CCACCCCCGATAAACTCTCT     104341       6                                                                                                 |                | Prb21A          | GACACATCAGCGGTTTGCA                                           | 31821          |
| 21P6GTACATCCACGTACATTCC3439021P7AACGTTTCCGATACATCAGCGTG3415021P8ATTCGTCTATCATACACACGGTG34222Ph21BTAACATTCACGATGTCCAA34222ORF 2828P1TAATGATGTCTCCCACTTCCACACA4847628P2CGACTTGTTCCTCCTCGTAATG4796528P3CCAACCAACGAAGCTGAAATAGA4818128P4ACGCTCTGTAAGTCTTGTGTC4796528P3CCAACCAACGAAGCAAGCAACGAAG48019ORF 2929P1CTACGGTTATACCTGCAAGTCCTCTCTCTGT5493629P2CTATGAGACTGCCAAG5475029P3CCATCTACAGACGACGAATATTAC5471029P3GCTTACAGACGCTACTGCT5485029P4CGTTACAGACGCTACC557850RF 4040P1GTACCTTACAGACGACGACAACA751880RF 4040P2TGACCTTACAGACGCGCTACC7530140P3CCTATACAGACAGCGCTACC7552940P4AGACCTACTCCACCCGCTAG756220RF 6262P1CTACCTTCCACCGCTACA755290RF 6363P1CCACCCCCGGTTAAACTCT1045962P3CTACCCCCGATTCCACCCCCCCATACA10512162P4CAGTGTTCCAACCCCTCTAAC1045963P3ACCCCCCCCCAATTCTCCAACCCCCCCAA11052263P3ACCCCCCCCCAATTCCCCAACCCCCCAA131*064P4GACGTCTCTCTCCAACCCCCCAAA131*064P4GACGTCTCTCTCTCCCCAACCCCCAAA11052263P3ACCCCCCCCAATTCCCCCACCAACACCCCCAAA131*064P4GACGCCTCTCCTCTCCCCAACCCCCCAAAA11052263P3ACCCCCCCCCAATTCC                                                                                                                                                                                                                                        |                | 21P5            | ATGCGCGTGGAATGGATAA                                           | 34079          |
| 21P7     AACGTTICCGATACATCAGGTG     34150       21P8     ATTICGTCATACACCATCT     34322       0RF 28     28P1     TAACATTCACGGATGTCCAA     34222       0RF 28     28P1     TAACATTCACGGATGTCCAC     4846       28P2     CGACTTGTTCCTCCTCGTCACGCAC     48476       28P3     CGACCACGACACGCAAATAGA     48181       28P4     ACGCTCTGTAAGCTCGATAGC     49019       0RF 28     28P3     CATTTACTGGGAACTGCATGGTCCTTCTGT     54936       28P4     CACGTTACAGACGCGAATTGGTCCTTCTGT     54936       29P2     CATTTACTGGGAACTGCACATCAC     54915       29P3     CCTTACAGACGACGAATATTA     54710       29P4     CGTTAACAGACGACGAAATTTA     54710       29P3     CGTTACAGACGACGTACAC     75728       29P4     CGTACTTACGACACGCCATACA     75728       29P3     CGTATACAGACAGCGCACATCA     75728       29P4     CGACCTACGTCACACCACACA     75728       29P4     CCATTTACAGACAGGCCACATACA     75728       29P4     CCATTACAGACAGCGCACATACA     75728       29P4     CCATTCACAGACAGCGCACATACA     75728       29P4     CCATTCACAGACAGCGCACATACA     75728       29P4     CCATTCACAGACAGCGCACATACA     7528       29P4     CCATTCACAGACAGCGCACATACA     7528       29P4 <td< td=""><td></td><td>21P6</td><td>GTACATCCCAGTACATTCC</td><td>34390</td></td<> |                | 21P6            | GTACATCCCAGTACATTCC                                           | 34390          |
| 21P8ATTTCGTCTATCATAAGCCATCT33222Ph21BTAACATTCACGCAGATGTCCAA3422228P1TAATGATGTCTCCCCACAA3422228P2CGACTCTTCTCCTCCTAATG4780528P3CCAACCAACGAAGCTGAAATAGA4818128P4CACTTCTTCCTCTGTAATG4795128P3CAACGACTGCAAG480190RF 2929P1CTACGGTTATACCTCGATGCGAGACTGCAAG4801928P2CATGCAGCTGCTGGACTGCTCTGCTGCTGGATGCTCTCTTCTG5493628P2CGCTTACAGCGCGCGCGACAATATTTA5471029P3GCCTTAATACCTCGCTAAC5485028P4CGTTAATACTCTCGCTAAC5485028P4CGTTAATACTCTCGCTAAC5485028P4CGTACAGACGACGACAACACC7518840P2TGACTCACCACGCCTAAC755290RF 4040P1CTAATCACACAGCGCTACC7530140P2TTGACTTACAGACAGCGCTACC755290RF 6262P1CTACACTCCCCACGCTAG10512140P3CCTATACAGACAGCGCTCCTCCTCCTCT10464562P4CACCCCCCCGATTAAACTCT10453162P3ATCGCATGCTCCACGTCTCCTCTCT10464562P4GACGTCTCCCACGTCTAACC11032263P3ATCCTACGCGCCATAGACACCCA11052263P4GACGCCTCTCTCCTCCTCCCT1045964P4GACGCCCCCCACGCCACACCCCACACA11052263P3ATCCCACCCCCACGCCACACCCCCACACA11037364P4GACGCCTCTCCTCTCTCCTCCT10464564P2CTACACCCCCCACACCCCCACACACCCCCACACA11037364P4GACGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC                                                                                                                                                                                                                                |                | 21P7            | AACGTTTCCGATACATCAGGTG                                        | 34150          |
| Phb21BTAACATTCACGGATGTCCAA34222ORF 2828P1TAACATTCACGGATGTCCAAG4447628P2CGACTTGTTCCTCCTGGTAATG4780528P3CCAACCAACGACGACGAAATAGA4818128P4ACGCTTGTAAGTCTTGTCT4795128P3CCATTTACTGGGAACTCGAAG4801928P4CACGTATCACGTCATTGG5465029P2GTATGAAGGTGGTGCGTGCATTCTTCTGT5493629P3GCCTTAACACGCACGAATATTA5471029P4CGTTAATACTGTACGTCCATCGT5485029P3GCCTTACAGACGACGAATATTA5475029P4CGTTAATACTGTACGTCACATCGT5485029P3GCCTTACAGACACGACAAATATTA5475029P4CGTATACAGACCACGCAATATTA5475029P4CGTATACAGACCACGCCAAAC751284002TTGACTTACAGACGGCTAAC75284003CCTATACAGACCAGGCTAAC75284003CCTATACAGACCAGGCTAACC75284004AGGCTAAGTCACTCGCACCATCA75284075CCAACCCCCGATAAACTCT10436162P4GCACCACCCCGATAACTCTCGCACCATAC10512162P3ATGCACCCCCGATTAACTCT10449663P4GCACACCCCCGATGAACCACCACCA11037363P4ATCTTACGCGCCTAATCCCCTCT10449663P2TTGCTACACCCCCCCCAACCACCACCCCCCCACAA11057263P4ATCTTACGCGCCCCAAGCACCACCCCCCCCAACAA11047363P4ACCCCGGATAGTCCAACCCCCCCCCCACAA11047363P4ACCCCCCCCCCCCCCCCCCAACCCCCCCCCCACAA11047363P4ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC                                                                                                                                                                                                                          |                | 21P8            | ATTTCGTCTATCATAAGCCATCT                                       | 34322          |
| ORF 28     28P1     TAATGATGTCTCCCAGTTCCCAGTTCCAATG     48476       28P2     CGACTGTTTCTCCTCTCTCAATG     47805       28P3     CCAACCAACGAAGCTCAATGA     48181       28P4     ACGCTCTTACTGCAACGA     48019       ORF 29     29P1     CTACGGTTATACCTCCATCGTTCTCTCTTTTTT     54936       29P2     CTATCAAGCACGACGCAACGAACTCCTTTTTTTTTACATCTCCTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | Prb21B          | TAACATTCACGGATGTCCAA                                          | 34222          |
| 28P2     CGACTIGTTCCTCCTCGTAATG     47805       28P3     CGACACCAACGAGAGGAAATAGA     48181       28P4     ACCCTCGTAAGTCTTCTGTC     47911       Ph28     CATTAACTGGAACTGCAACGACAGAATAGA     48019       0RF 29     29P1     CTACGGTTATAGTCTTGTGT     54936       29P3     GCTTACAGACGACGAATTTA     54710       29P3     GCTTACAGACGTCGTGCTCCATCCT     54850       29P3     CGTTACAGACGCCGTAATTTA     54710       29P4     CGTTAACAGCACGAAATATTA     54750       29P4     CGTTAACAGCACGACAAATTTA     54750       0RF 40     40P1     GTACTTACAGACACGCCACAAC     75188       40P2     TTGACTTACAGACAGCACAAC     75623       40P3     CCATATCACACAGCGCACAACA     75529       0RF 62     62P1     CTATCATCTCCCCACCGGTAG     75623       62P2     CCACCCCCGCATAACCCTCGACTTAAC     75529       0RF 63     63P1     CGACACCACCGGCTAACCCTCGTACACA     10434       62P2     CCACCCCCGCGTAACCCTCGTACT     104496       0RF 63     63P1     GCACACCACCGATGACGCACCA     110522       63P2     TTGCTCACACGCGCCCAATCTCTAACTCCGT     104529       64P4     ACCCCGCATGACCACCCCCCCCCCTAACCCC     10453       65P4     GCACACCCCCCACGCATACTCTTAACTCCT     104529       67P     63P3                                                                       | ORF 28         | 28P1            | TAATGATGTGTCGCAGTTGCAGCA                                      | 48476          |
| 28P3     CCAACCAACGAAGCTGAAATAGA     48181       28P4     ACGCTCTGTAAGTCTTCGTC     49951       Prb28     CATTTACTCGGAACTGCAAG     48019       ORF 29     29P1     CTATGAAGCGTGTAGGCATTGG     54936       29P2     CTATGAAGCGTGTCGCGTGATTCTCTTCTGT     54936       29P3     CCCTTACAGAGAGCAGAATATTA     54710       29P4     CCTTAATACTCTAGCTCCATCGT     54850       29P4     CCTTAATACTCTAGCTCCATCGT     54850       0RF 40     40P1     CTACTACAGACGACAAC     75188       40P2     TTGACTTACAGACAGCCACATACA     7528       40P3     CCTATACAGACAGCCACATACA     75622       40P4     CAGCTTAACTCCCCCCGCGATCTAAC     75623       40P4     CCACCTCCCGCACATACA     75629       62P1     CTACCTCCCACCGTGGATCTAAC     75629       62P3     ATGGACTCACCGCGGAGCTTATTG     104541       62P4     CACCTCCCCCCCGCGCCCCCCCCCCCCCCCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                       |                | 28P2            | CGACTTGTTCCTCCTCGTAATG                                        | 47805          |
| 28P4AGGCTCTGTAAGTCTTGTGTC47951Pb28CATTTACTGGAACTGCAAG48019ORF 2929P1CTACGGTTATACGTGCATGG5465029P2GTATGAAGGTGGTGCGTGCATTCTTCTGTGT5493629P3GCCTTACAGCAGCAGAATATTTA5471029P4CGTTAATTACTGTAGCTCCATCGT5485040P2TGACGCGTTATAGACGCGAAC5752840P2TGACTTAGAACTGCGTAAC7572840P3CCATACACACAGCGCACACAC755290RF 4040P4AGAGCTACTCGCACCGCCACC755290RF 5262P1CTATCATCTCCCACCGGTAC755290RF 6262P1CTATCATTCCCACCGGTAGC1043162P3ATGGACTTCCCACCGCGTATCT10445962P4CACGCCCCCATTAAACTCT10456662P4CACGCGCCCATTACACACGCGCTACT1045963P3ACCCGCATGACGACGCCCCCTTATT1045964P4ACGCGCTATCCCACCCGCTATAT1045965P2CTGGCTTATCCACCGCGCTATTT1045965P3ACCCGCATGACGACGCCCCCCTTATT1045965P4CTGCTCTACAGACTCCCGTACCCGT11052265P3ACCCGCATGACGACGCCCCCCGAA11037365P4TGACGACGCCTCTCTGCTGTGCAACCGCCCCCGAA1037365P4TGACCACGCCCCCCCACACCGCCAA1045967P-P1GACCCGCTCTCTTGCTGTGTCACCGCCCCCGCAA1045967P-P2TGCCCGCTCTCTTGCTGCTCGCCCCCCGCAA33067P-P3TGCTCACACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC                                                                                                                                                                                                                                                                                                     |                | 28P3            | CCAACCAACGAAGCTGAA ATAGA                                      | 48181          |
| Phb28CATTACTCGGAACTCGCATGG40019ORF 2929P1CTACGGTTATACCTGCCATTGG54565029P2GTATGAACGTGGTGCGTGATTCTCTTCTGT5471029P3GCCTTACACACGACGAATATTTA5471029P4CCTTATACTTAGCTCCCTCGT548500RF 4040P1GTACTCTTAGAAG547950RF 4040P1GTACTACAGACGACAAC7512840P2TGACCTACAGACGACAAC7522640P3CCTATACAGACAGCCTACC7530140P4AGACCTACTCGCACTGCACATCAC755290RF 6262P1CTATCATTCTCCCACCGGTACA755290RF 6262P2CCACCCCCCGATTAAACCTCT10451662P3ATGGACTGGATGTCCTCGTCCTCCT10466662P4GACTCTCTCAACCTCTCCTCT10451662P3ATCGACGGGATGCCCCGCATTAAT1042263P2TTGTCTACAGCCCACTACC11032263P3ACCCGGATGAACGTCTTGCACACAT11032263P4ATCTTACGCGCCACAA11032263P2TTGTCTACAGCGCCACACA11042764P4ACCTGCGTTCTACCCGTCCTCTCT10447665P2GTGCCTTATGCCACCACCACCA11032263P3ACCCGGATCATCTCGTAACCCGCTAAT11042764P4ATCTTACGCGCCACAACACCGCACA11042764P4ATCTTACCGCCCATGTCCCTCCTCAAACCCGC1043765P2GTACCACGCGTTCTCTCTCCGTAACTCCGAA11042764P4ATCTTACCACCCCCACACACCGCCAAA11042765P4ATCTACACCCCCCACGCACACACCCCCCCACAA11042764P4GACCACCCCCACTTCTCCCCCCCC24664P4ATCTACCCCCCCACGTCTCTCC                                                                                                                                                                                                                                |                | 28P4            | ACGCTCTGTAAGTCTTGTGTC                                         | 47951          |
| ORF 29     29P1     CTACGGTTATACGTGCATTGG     54650       29P2     GTATCAAGCGTGCTCATTTGTTTTTGT     54936       29P3     GCCTTACAGACGACGACATATTTA     54910       29P4     CGTTAATTACTGTAGCTCCATCGT     54850       Ph29     TGATCCAGACGACGACGACGACGACGACGACGACGACGACGACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | Prb28           | CATTTACTGGGAACTGCAAG                                          | 48019          |
| 29P2CTATGAAGGTGGTCGTGGTCGTGATTCTCTTGT5493629P3GCCTTACAGACGACGAATATTTA5471029P4CGTTAATTACTGTAGCTCCATCGT54850Ph29TGATCCCGTTTAGAACTCGGTAAC5718840P1GTACTTAGAACTCGGTAAC7518840P2TTGACTTACAGACAGGACAACA752840P3CCTATACAGACAGGCCTCCTGGATCAC752840P4AGAGCTAAGTCACTCGCACACACACA755290RF 6262P1CTATCATTCCCCACCGGTAG10612162P2CCACCCCCCATTAAACTCAT10434162P3ATGGAGTGGATGTCCTCCTCCTCCT10466662P4GAGCTATTCCAACGCAGTGACCACA11082263P2GTGGCTTATTGCAAGCAGCGCCTATT1044960RF 6363P1GCAACAGCGATGACCACCACA11082263P2GTGGCTTATTGCAAGCAGCTCTCGTAAC11082263P3ACCCGGATGATCATCTCCTCTCTAAC11082263P4ATCCTACGCGCCCAAGAATGTTGCAACACA11082263P3ACCCGGATGATGAATGTTGTAACGGAA11037363P4ATCCTACGCGCCCAAGATGTTGGAA110447GFPGFP-P1GAACGTCCACCGCCCCAAGAATGTTGAA110447GFPGFP-P2GATGCCTCTTCTGCTTGGAA430β-ActinActP1GATGCCATCCTCACACGCGGGGAAGATGT3339OtherLu-T7-oligo(dT)GTAAACGACGCCAGCGCCAGCACCACCACCACACACAGGAGCATGTT3309PhbactCAACGCCCACACGCGCAGCAGTATATCGACTCTATAGGGATGGTT3309PrbactCAACGCCCACACGCGCAGTGCGACGTTTTTTTTTTTTTT                                                                                                                                                                                                                                             | ORF 29         | 29P1            | CTACGGTTATACGTGCATTGG                                         | 54650          |
| 29P3GCCTTACAGACGACGAATTTAA5471029P4CGTTAATTACTGTAGCTCCATCGT5485029P4TGATGCCCTTTTAGAAG547500RF 4040P1GTACTTAGAACTCCGTAAC7518840P2TTGACTACAGACAGCACAAC7530140P3CCTATACAGACACGGCTACC7530140P4AGAGCTAAGTCGCACCACCACACA752290RF 6262P1CTATCATCTCCCACCGGTAG10512162P2CCACCCCCGATTAACAGCGCCTCCTC10434162P3ATGGAGTGGATGTCCCACCGCCTTAT104459Ph60GAGTGTTCCAACGGCTCTCCTCCT10436162P4GAGTGTTCCCAACGTGTCTAACCCGGT103220RF 6363P1GCACACGCACGACACA11032263P2TTGGTACAGCATCGCGCGCCTTATT104459Ph63TGACGCGCTCTCTCTCTCCTCCT10459163P2TTGGTACAGCGCCCCCCGAA11032263P3ACCCGGCTCTCTCTCACCCGCACA11032263P4ATCTACGCGCCATATGCTCTACCGAA11042764PGAGTGCTTCTCTGCCACCCCCGCAA11042764PGAGCGCTCCTCTCTGCCTCCTCTACCCACACCAC11042764PGCCCCCGCTCTCTCTGCCCCCCCCCCCCCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 29P2            | GTATGAAGGTGGTGCGTGATTCTCTTCTGT                                | 54936          |
| 29P4CGTTAATTACTGTAGCTCCATCGT54850Prb29TGATGCCGTTTTAGAAG54795ORF 4040P1GTACTTTAGAACTGCGTAAC7518840P2TTGACTTACAGACAGACAAC7522840P3CCTATACAGACAGGCTACC75529Prb40TTAAACGACCTCCTGGATCTAAC755290RF 6262P1CTATCATCTCCCACCGGTAG10434162P2CCACCCCCGATTAAACTCT10445962P3ATGGAGTGCAGTGTCTCCTCCTCTCTCT1044590RF 6363P1GCACACGCGATGAGCGACCAC11032263P4ATCTACGGCCCGGCAAGCCACCACCGGAA11032363P3ACCCGGATGAGCGACCACCGCGCAA11052363P4ATCTTAGGGCCCAAGCGACCACCGCGAA11057363P4TGCACTCATCTGCCACCGCGCAA11057363P4TGCACTCATCTGCACACCCGCGAA110447GFPGPP-P1GAACTCATCTGCTAGCACCCCGCAAA11057363P4TGCACTCATCTGCCCCCAAGAAC131 <sup>b</sup> GFP-P3TTCTCACTCCAGCTGTGTCCCCCAAGAA300β-ActinPrbGFPTTCGCATCACCCCCCCCAGGAAT3260 <sup>c</sup> β-ActinActP1GAACTCACTCTCAAGTGCGCCAGGAA3339OtherLU-17-oligo(dT)GTAAAACACACGGCCAGGTA ATACGACTCACTATAGGACTGCTT3309OtherLU-17-oligo(dt)GACACACCGCTATCGATGTCGACCCCCACGGAACTCACTATAGGACTGCTT3309OtherLU-17-oligo(dt)GACCACCGCTATCGATGTCGACCTCTTTTTTTTTTTTTT                                                                                                                                                                                                                                                                          |                | 29P3            | GCCTTACAGACGACGAATATTTA                                       | 54710          |
| Phb29TCATCGCCTTTTAGAAG54795ORF 4040P1GTACTTTAGAAG7518840P2TTGACTTACAGACAGACAAC752840P3CCTATACAGACAGGCTACC7530140P4AGACCTAACTCGCACATACA75622phb40TTAAACGACCTCCTGGATCTAAC75529ORF 6262P1CCACCCCGATTAAACTCT10434162P2CCACCCCCGATGACCTCTGCTCCTCCT10446662P4GACTGTTCCAACGTCCTTTTATTG10446662P4GACGTCTATGCAGTCGCGCGCTTATT10446662P4GACGTCTATTCCAACGTCCTCCTCCT104259765275529105221052263P3ATCGAGCGATGACGACCA11032363P4GCAACAGCGATGATCACCCGCGCTTATT1044960RF 6363P1GCAACAGCGATGATGATGCTCTCCTCCT11062263P3ACCCGGATGATGAATGTTGTACGGACA11037364PTCACGACGCCTCCCAAGATGCTCACC11052365PGFP-P1GAAGCTCATCTCGCACGCGCAA1104476FPGFP-P2GATGCCTTCTTCTGCTTGCT4826FPGFP-P3TTCTCAAGTCCGCCATGCCCAGGAT310β-ActinActP1GATGCATTGTACAGGCCCCCAGGAT3309β-ActinActP1GATGCCTCCTCAGGGGGAGATATGCACTATAGGGATCGTT3500β-ActinActP1GATGCCTCCTACGATGCGAGGAGGTG3339OtherLU-T7-oligo(dT)GTAAAACGACGCCCAGTATCGATGTCACACATATAGGGATCGTT3500β-ActinACCE-oligo(dt)GATAAACGACGCCCAGTATCGATGTCGACTCACTATAGGGATCGTT3339OtherLU-T7-oligo(dT)GTAAAACGACGCGCAGGTGATATACGACTCACATATAGGGATCGTT <td></td> <td>29P4</td> <td>CGTTAATTACTGTAGCTCCATCGT</td> <td>54850</td>                                                                                                                      |                | 29P4            | CGTTAATTACTGTAGCTCCATCGT                                      | 54850          |
| ORF 4040P1GTACTTTAGAACTGCGTAAC7518840P2TTGACTTACAGACAGACAAC7572840P3CCTATACAGACAGGCTACC7530140P4AGAGCTAAGTCACTCGCACATACA75622Prb40TTAAACGACCTCCTGGATCTAAC75529ORF 6262P1CTATCATTCTCCACCCGCTAG10512162P2CCACCCCGATTAAACTCT10434162P3ATGGAGTGGATGCTCCGCGCTCTCT10466662P4GAGTGTTCCAACGTGCTTCCTCCTCCTC104459Prb62GTGGCTTATTGCAGTCCGGGGCTTATT10446663P363P1GCAACAGCGATGACCACCA11032263P2TTGTGTACAGACTCTCGTAACTCCGTA10459263P2TGGCTACAGACTCTCGTAACTCCGTA11032263P3ACCCGGATGATGAAGTGTTGTAACGAA11047364P4ATCTTAGCGGCCCATATGCTCTACC11059263P3ACCCGGGCCCCATATGCTCTACC110592Prb63TGACGACGGCCCCAAGCAGCAA1104776FPGAAGTCCATCTGCACACCCCCCAGAA1104776FP-P3TTCTTCAAGTCCCCCAAGCAGCAT430β-ActinActP1GAAGCCATCTTGTACGGAAGT430β-ActinActP2TCATACACATCTCAAGTTGCACACCCCCAGGAT3339OtherLU-T7-oligo(dT)GTAAAACGACGCCAAGGGGACGTG3339OtherLU-T7-oligo(dt)GACACACGCGTATGCATGCACCACTTTTTTTTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                 |                | Prb29           | TGATGCCGTTTTAGAAG                                             | 54795          |
| 40P2TTGACTTACAGACACACACACACACACACACACACACACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ORF 40         | 40P1            | GTACTTTAGAACTGCGTAAC                                          | 75188          |
| 40P3CCTATACAGACAGGCTACC7530140P4AGAGCTAAGTCACTCGCACATACA75622Prb40TTAAACGACCTCCTGGATCTAAC75629ORF 6262P1CTATCATTCTCCCACCGGTAG10512162P2CCACCCCCGATTAAACTCT10434162P3GAGTGTTCCCACGTGCTCCTCCTC104459Prb62GTGGCTTATTCCAGCGGCGCTTATT104496ORF 6363P1GCAACAGCGATGACCGCGGCCTTATT1062263P3ACCCGGATGACGCACAACGTCTCCGTAACTCCGT11062263P3ACCCGGATGATGCCCGAGCACA11037363P4ATCTTAGCGCCCATATTGCTACCGAA11057363P4ATCTTAGCGCCCATAGTCGCAGCACA11057365P4TGACCACGCGTCCTCGCTACCC110447GFPGAPCCCCCTCCTCTGCCTTCTCC482GFP-P1GAAGTTCATCTGCACCCGCCAAGATGTTGAA131 <sup>b</sup> β-ActinGAP2TTCTTCAAGTCCGCCAAGATGTCGCAGAT3260 <sup>c</sup> β-ActinActP1GATGCATCTTCACAGTCGCGCGATATGCTGAGC3309OtherLU-T7-oligo(dT)GTAAAACCACGCCCAGGCAAATACCCACTATAGGGATCGTT3309OtherLU-T7-oligo(dT)GTAAAACCACGCCATGCCGACGACCACTATAGGGATCGTT3309OtherLU-T7-oligo(dT)GTAAAACCACGCCAGGTAATAACGACTCACTATAGGGATCGTT3309OtherLU-T7-oligo(dT)GTAAAACCACGCCAGGTAATGCTGCGACTTTTTTTTTTT                                                                                                                                                                                                                                                                                                       |                | 40P2            | TTGACTTACAGACAGACAAC                                          | 75728          |
| 40P4AGAGCTAAGTCACTCGCACATACA75622Phb40TTAAACGACCTCCTGGATCTAAC75529ORF 6262P1CTATCATTCTCCCACCGCTAG10512162P2CCACCCCGATTAAACTCT10434162P3ATGGAGTGCTCCTCGTCCTCCTCCT10466662P4GAGTGTTCCAACGTGCTCTCGTCCTCT104459Phb62GTGGCTTATTGCAGCGGGGCTTATTG1042263P2TTGTGTACAGACTCTCGTAACTCCGT11052263P2TTGTGTACAGACTCTCGTAACTCCGTA11052263P3ACCCGGATGATGATGATGTTGTACGGAA11052263P4GCACAGCGCCCATATGCTCTACCCGT11052263P3ACCCGGATGATGCTCTCACACACCGGAA11057364P4ATCTTAGCGCCCATATGCTCTACCG11052265P2GAGGTCATCTTCGCTAACCCCCGCAA11057365P4GFP-P2GACGCGCGCCCCGAAGATGTTGAA110447GFPGFP-P3TTGTCACAGCTCCTCTGTGCTCGAAC24667P-P3TTGTACAAGTCCCCCAGGCAA430β-ActinGATCACATCTCAAGTTGCGCCAAGCCC450β-ActinGATCCACCCCACACGGGAAGT3200PhbGFPTTGCCCACCACACGGGAAGTGGGG3339OtherLU-T7-oligo(dT)GTAAAACGACGCCAGCTG ATATACGACTCACATATAGGGATCGTT<br>TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                           |                | 40P3            | CCTATACAGACAGGGCTACC                                          | 75301          |
| Phb0TTAAACGACCTCCTGGATCTAAC75529ORF 6262P1CTATCATTCTCCACACGGTAG10512162P2CCACCCCCGATTAAACTCT10436162P3ATGGAGTGGATGTCCTCGTCCTCCT10466662P4GAGTGTTCCAACGTTTTTATTG104496ORF 6363P1GCAACAGCGATGACGACCA11032263P2TTGTGTACAGACTCTCGTAACTCCGT11062263P3ACCCGGATGAACGATGTTGTAACGAAA11037363P4ATCTTAGCGGCCAATGTTGAAC110542Phb63TGACGACGGCTCCGAAGATGTTGAA110447GFPGFP-P1GAACGACGCTCCGAACATGTTGAA1105426FP-P2GATCCCGTCTTGCTTGCTTGCAA1105426FP-P3TTGTCAACGGCTCCCCAAGATGTTGAA110447GFPGFP-P4TGACGACGCTCCCGAAGATGTTGAA104476FP-P3TGCCGTCTCTTGCTTGCTTGCT4826FP-P4TTGTCACACCTGCCCATGGCC430β-ActinActP1GATGCATCGTCACGAGGTGCCAAGATGTGAGATG3500PhbctCAAGTCCACACAGGCGAGGTG3500PhbActCAAGTCCACACAGGCGAGGTG3509PhbActGACCACGCGTATCGATGTCGACTTTTTTTTTTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 40P4            | AGAGCTAAGTCACTCGCACATACA                                      | 75622          |
| ORF 6262P1CTATCATTCTCCCACCGGTAG10512162P2CCACCCCGATTAAACTCT10434162P3ATGGAGTGGATGTCCTCGTCCTCCT10466662P4GAGTGTTCCAACGTCTTTTATTG104459Prb62GTGGCTTATTGCAGCGCGGGCTTATT10426ORF 6363P1GCAACAGCGATGACGACCA11032263P2TTGTGTACAGAGCTCTGTAACTCCGT11062263P3ACCCGGATGATGAATGTTGTACGGAA11037363P4ATCTTAGCGGCCATATGCTCTACC110592Prb63TGACGACGGCTCCGAACATGTTGAA110447GFPGAAGTTCATCTGCACCACCGCGCAA110447GFPGATGCCGTTCTTCTGCTTGTC482GFP-P3TTCTTCAAGTCCGCCATGCCC246GFP-P4TTGTACTCCAGCTTGTCCCCAGGAT430Prb6FPTTGCCGTCCTTGTGCCCCAGGAT300β-ActinActP1GATGCCATTGTTACAGGAAGT3260°ActP2TCATACATCTCAAGTTGGGGG3500PrbActCAAGTCCACACAGGGCAGGTG3339OtherLu-T7-oligo(dT)GTAAAACGACGGCAGGTGCACCATTTTTTTTTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | Prb40           | TTAAACGACCTCCTGGATCTAAC                                       | 75529          |
| 62P2CCACCCCGATTAAACTCT10434162P3ATGGAGTGGATGCTCCTCGTCCTCCT10466662P4GAGTGTTCCAACGTGTTTAATTG104459Prb62GTGGCTTATTGCAGTGCGGGGCTTATT104296ORF 6363P1GCAACAGCGATGACGACCA11032263P2TTGTGTACAGAGTCTCGTAACTCCGT11062263P3ACCCGGATGATGACAATGTTGTACGGAA11037363P4ATCTTAGCGGCCATATGCTCTACC110592Prb63TGACGACGGCTCCGAAGATGTTGAA110447GFPGFP-P1GAAGTCACTCGCTTGCTCGCCCAGGAA110447GFPGFP-P2GATGCCGTTCTTCTGCACCACCGGCAA131 <sup>b</sup> GFP-P3TTCTTCAAGTCCGCCATGCCC482GFP-P4TTGTACTCCAGCTTGTGCCCCAGGAT430PrbGFFTTGCCGTCCTCCTTGAAGTCGATG403β-ActinGATGCATTGTACAGGAGAGT3500prbActCAAGTCCAACACAGGGAGAGTG3339OtherLu-Tr-oligo(dT)GTAAAACGACGGCAGGTAATACGACTCAATAGGATCGTTGTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ORF 62         | 62P1            | CTATCATTCTCCCACCGGTAG                                         | 105121         |
| 62P3ATGGAGTGGATGTCCTCGTCCTCCT10466662P4GAGTGTTCCAACGTGTTTTATTG104459Prb62GTGGCTTATTGCAGTCGCGGGCTTATT104496ORF 6363P1GCAACAGCGATGACGACCA11032263P2TTGTGTACAGACTCTCGTAACTCCGT11062263P3ACCCGGATGATGAATGTTCTACGGAA11037363P4ATCTTAGCGGCCATATGCTCTACC110592Prb63TGACGACGCCTCCGAACATGTTGAA110447GFPGFP-P1GAAGTCACTCGCGCCAAGATGTTGAA110477GFP-P2GATGCCGTTCTTCTGCTTGTC482GFP-P3TTCTTCAAGTCCGCCCATGCCC246GFP-P4TGGCGTCCTCTTGTGTGTC430β-ActinActP1GATGCCATTGTACAGGATGTGGAGTGGATG3309β-ActinActP1GATGCCATCTCAAGTGGGGG3309OtherLu-Tr-oligo(dT)GATAACAGCGCGATGGCGAATATAGCACTCATATAGGGATGTT3339OtherRACE-oligo(dt)GACCACGCGTATCGATGTGAACTACACATATGGATGTT339ACEGACACAGCGCTATCGATGCGACGACGACGACGACGACGACGACGACGACGACGACGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 62P2            | CCACCCCGATTAAACTCT                                            | 104341         |
| 62P4GAGTGTTCCAACGTGTTTATTG104459Prb62GTGGCTTATTGCAGTCGCGGGGCTTATT104496ORF 6363P1GCAACAGCGATGACGACCA11032263P2TTGTGTACAGACTCTCGTAACTCCGT11062263P3ACCCGGATGATGATATGTTGTACGGAA11037363P4ATCTTAGCGGCCATATGCTCTACC110592Prb63TGACGACGGCTCCGAAGATGTTGAA131 <sup>b</sup> GFP-1GAAGTTCATCTGCACCACCGGCAA131 <sup>b</sup> GFP-P2GATGCCGTCTTCTGTGTTGTC482GFP-P3TTCTTCAAGTCCGCCATGCCC266GFP-P4TTGTACTCCAGCTTGTGCCCAGGAT430β-ActinActP1GATGCATTGTACAGGAAGT3260°ActP2TCATACATCTCAAGTCGGGG3500PrbActCAAGTCCACACAGGGGAGGTG3339OtherU-T7-oligo(dT)GTAAAACGACGCCATGGCGCATATAGGATCGTT3339ACE-oligo(dt)GACCACGCGTATCGATGTCGACGTTTTTTTTTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 62P3            | ATGGAGTGGATGTCCTCGTCCTCCT                                     | 104666         |
| Prb62GTGGCTTATTGCAGTCGCGGGCTTATT104496ORF 6363P1GCAACAGCGATGACGACCA11032263P2TTGTGTACAGACTCTCGTAACTCCGT11062263P3ACCCGGATGATGAATGTTGTACGGAA11037363P4ATCTTAGCGGCCATATGCTCTACC110592Prb63TGACGACGGCTCCGAAGATGTTGAA110447GFPGFP-P1GAAGTTCATCTGCACCACCGGCAA131 <sup>b</sup> GFP-P2GATGCCGTTCTTCTGCTTGTC482GFP-P3TTGTAAGCGCCATGCCCCAGGAT430β-ActinActP1GATGCATTGTTACAGGAAGT3260 <sup>c</sup> ActP2TCATACATCTCAAGTTGGGGG3339OtherLU-77-oligo(dT)GACCACGCGTATCGATGTCGACGACTCATATAGGGATCGTT3339OtherRACE-oligo(dt)GACCACGCGTATCGATGTCGACGACT3339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | 62P4            | GAGTGTTCCAACGTGTTTTATTG                                       | 104459         |
| ORF 6363P1GCAACAGCGATGACGACCA11032263P2TTGTGTACAGACTCTCGTAACTCCGT11062263P3ACCCGGATGATGATGAATGTTGTACGGAA11037363P4ATCTTAGCGGCCATATGCTCTACC110592Prb63TGACGACGGCTCCGAAGATGTTGAA110447GFPGFP-P1GAAGTTCATCTGCACCACCGGCAA131 <sup>b</sup> GFP-P2GATGCCGTTCTTCTGCTTGTC482GFP-P3TTCTTCAAGTCCGCCATGCCC246GFP-P4TTGTACTCCAGCTTGTGCCCCAGGAT430PrbGFPTTGCCGTCCTCCTTGAAGTCGATGT3260°β-ActinActP1GATGCATTGTTACAGGAAGT3260°ActP2TCATACATCTCAAGTTCGGGGG3339OtherLU-T7-oligo(dT)GTAAAACGACGGCCAGGTAATACGACTCACTATAGGGATCGTT3339OtherKACE-oligo(dt)GACCACGCGTATCGATGTCGACC3339ACEGACCACGCGTATCGATGTCGACCGACCACGCGTATCGATGTCGAC339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | Prb62           | GTGGCTTATTGCAGTCGCGGGCTTATT                                   | 104496         |
| 63P2TTGTGTACAGACTCTCGTAACTCCGT11062263P3ACCCGGATGATGAATGTTGTACGGAA11037363P4ATCTTAGCGGCCATATGCTCTACC110592Prb63TGACGACGGCTCCGAAGATGTTGAA110447GFPGAFP-P1GAAGTTCATCTGCACCACCGGCAA131 <sup>b</sup> GFP-P2GATGCCGTTCTTCTGCTTGTC482GFP-P3TTCTTCAAGTCCGCCATGCCC246FP-P4TTGTACTCCAGCTTGTGCCCCAGGAT430β-ActinActP1GATGCATTGTTACAGGAAGT3260 <sup>c</sup> ActP2TCATACATCTCAAGTTGGGGG3500PrbActCAAGTCCACACAGGGAGGTG3339OtherLU-T7-oligo(dT)GACCACGCGTATCGATGTCGACGACCATATAGGGATCGTT3339ACEGACCACGCGTATCGATGTCGACGTCGACG3349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ORF 63         | 63P1            | GCAACAGCGATGACGACCA                                           | 110322         |
| 63P3ACCCGGATGATGATGTTGTACGGAA11037363P4ATCTTAGCGGCCATATGCTCTACC110592Prb63TGACGACGGCTCCGAAGATGTTGAA110447GFPGFP-P1GAAGTTCATCTGCACCACCGGCAA131 <sup>b</sup> GFP-P2GATGCCGTTCTTCTGCTTGTC482GFP-P3TTCTCAAGTCCGCCATGCCC246GFP-P4TTGTACTCCAGCTTGTGCCCAGGAT403β-ActinActP1GATGCCATTGTTACAGGTCGATG3260 <sup>c</sup> ActP2TCATACATCTCAAGTTGGGGG3500PrbActCAAGTCCACAGGGCAGGTG3339OtherLU-T7-oligo(dT)GTAAAACGACGGCCAGGTAATACGACTCACTATAGGGATCGTT<br>TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | 63P2            | TTGTGTACAGACTCTCGTAACTCCGT                                    | 110622         |
| 63P4ATCTTAGCGGCCATATGCTCTACC110592Prb63TGACGACGGCTCCGAAGATGTTGAA110447GFPGFP-P1GAAGTTCATCTGCACCACCGGCAA131 <sup>b</sup> GFP-P2GATGCCGTTCTTCTGCTTGTC482GFP-P3TTCTTCAAGTCCGCCATGCCC246GFP-P4TTGTACTCCAGCTTGTGCCCAGGAT430β-ActinActP1GATGCCATTGTTACAGGAAGAT3260°ActP2TCATACATCTCAAGTCGGCG3500PrbActCAAGTCCACACGGGCAGGTG3339OtherLU-T7-oligo(dT)GTAAAACGACGGCCAGGTAATACGACTCACTATAGGGATCGTT<br>TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | 63P3            | ACCCGGATGATGAATGTTGTACGGAA                                    | 110373         |
| Prb63TGACGACGGCTCCGAAGATGTTGAA110447GFPGFP-P1GAAGTTCATCTGCACCACCGGCAA131 <sup>b</sup> GFP-P2GATGCCGTTCTTCTGCTTGTC482GFP-P3TTCTTCAAGTCCGCCATGCCC246GFP-P4TTGTACTCCAGCTTGTGCCCCAGGAT430PrbGFPTTGCCGTCCTCTTGAAGTCGAAGTG403β-ActinActP1GATGCATTGTTACAGGAAGT3260 <sup>c</sup> ActP2CATACATCTCAAGTTGGGGG3500PrbActCAAGTCCAACAGGGGAAGTG339OtherLU-T7-oligo(dT)GTAAAACGACGGCCAGGTAATAACGACTCACTATAGGGATCGTT<br>TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 63P4            | ATCTTAGCGGCCATATGCTCTACC                                      | 110592         |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | Prb63           | TGACGACGGCTCCGAAGATGTTGAA                                     | 110447         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GFP            | GFP-P1          | GAAGTTCATCTGCACCACCGGCAA                                      | $131^{b}$      |
| $ \begin{array}{cccc} {\rm GFP-P3} & {\rm TTCTTCAAGTCCGCCATGCCC} & 246 \\ {\rm GFP-P4} & {\rm TTGTACTCCAGCTTGTGCCCCAGGAT} & 430 \\ {\rm PrbGFP} & {\rm TTGCAGTCTCTTGAAGTCGATG} & 403 \\ {\rm \rhorbGFP} & {\rm TTGCCGTCTCTTGAAGTCGATG} & 3260^{\circ} \\ {\rm ActP1} & {\rm GATGCATGTTACAGGAAGT} & 3260^{\circ} \\ {\rm ActP2} & {\rm TCATACATCTCAAGTTGGGGG} & 3500 \\ {\rm PrbAct} & {\rm CAAGTCCAACACGGGAGGTG} & 3339 \\ \\ {\rm Other} & {\rm LU-T7-oligo(dT)} & {\rm GACACGCGTATCGATGTCGACGACTCACTATAGGGATCGTT} \\ {\rm RACE-oligo(dt)} & {\rm GACCACGCGTATCGATGTCGAC} \\ {\rm RACE} & {\rm GACCACGCGTATCGATGTCGAC} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | GFP-P2          | GATGCCGTTCTTCTGCTTGTC                                         | 482            |
| $ \begin{array}{cccc} {\rm GFP-P4} & {\rm TTGTACTCCAGCTTGTGCCCCAGGAT} & 430 \\ {\rm PrbGFP} & {\rm TTGCCGTCCTCGTGAAGTCGATG} & 403 \\ {\rm ActP1} & {\rm GATGCATGTTACAGGAAGT} & 3260^{\rm c} \\ {\rm ActP2} & {\rm TCATACATCTCAAGTTGGGGG} & 3500 \\ {\rm PrbAct} & {\rm CAAGTCCAACATGGGGGGG} & 3339 \\ {\rm Other} & {\rm LU-T7\-oligo(dT)} & {\rm GTAAAACGACGGCCAGGTAATACGACTCACTATAGGGATCGTT} \\ {\rm RACE\-oligo(dt)} & {\rm GACCACGCGTATCGATGTCGAC} & {\rm STTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | GFP-P3          | TTCTTCAAGTCCGCCATGCCC                                         | 246            |
| $ \begin{array}{cccc} & \mbox{PrbGFP} & \mbox{TTGCCGTCCTTGAAGTCGATG} & \mbox{403} \\ & \mbox{ActP1} & \mbox{GATGCATTGTTACAGGAAGT} & \mbox{3260}^c \\ & \mbox{ActP2} & \mbox{TCATACATCTCAAGTTGGGGG} & \mbox{3500} \\ & \mbox{PrbAct} & \mbox{CAAGTCCACAGGGGAGGTG} & \mbox{3339} \\ \\ \mbox{Other} & \mbox{LU-T7-oligo(dT)} & \mbox{GTAAAACGACGGCCAGGTAATACGACTCACTATAGGGATCGTT} \\ & \mbox{RACE-oligo(dt)} & \mbox{GACCACGGGTATCGATGTCGAC} & FTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | GFP-P4          | TTGTACTCCAGCTTGTGCCCCAGGAT                                    | 430            |
| $ \begin{array}{cccc} \beta - Actin & ActP1 & GATGCATTGTTACAGGAAGT & 3260^c \\ ActP2 & TCATACATCTCAAGTTGGGGG & 3500 \\ PrbAct & CAAGTCCACAGGGGAGGTG & 3339 \\ Other & LU-T7-oligo(dT) & GTAAAACGACGGCCAGGTAATACGACTCACTATAGGGATCGTT \\ TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | PrbGFP          | TTGCCGTCCTTCGAAGTCGATG                                        | 403            |
| ActP2TCATACATCTCAAGTTGGGGG3500PrbActCAAGTCCACAGGGGAGGTG3339OtherLU-T7-oligo(dT)GTAAAACGACGGCCAGGTAATACGACTCACTATAGGGATCGTT<br>TTTTTTTTTTTTTTTTTTTTTRACE-oligo(dt)GACCACGCGTATCGATGTCGACRACEGACCACGCGTATCGATGTCGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\beta$ -Actin | ActP1           | GATGCATTGTTACAGGAAGT                                          | $3260^{\circ}$ |
| PrbAct     CAAGTCCACAGGGGAGGTG     3339       Other     LU-T7-oligo(dT)     GTAAAACGACGGCCAGGTAATACGACTCACTATAGGGATCGTT<br>TTTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | ActP2           | TCATACATCTCAAGTTGGGGG                                         | 3500           |
| Other     LU-T7-oligo(dT)     GTAAAACGACGGCCAGGTAATACGACTCACTATAGGGATCGTT<br>TTTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | PrbAct          | CAAGTCCACAGGGGGAGGTG                                          | 3339           |
| RACE-oligo(dt)GACCACGCGTATCGATGTCGACTTTTTTTTTTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Other          | LU-T7-oligo(dT) | GTAAAACGACGGCCAGGTA ATACGACTCACTATAGGGATCGTT<br>TTTTTTTTTTTTT |                |
| RACE GACCACGCGTATCGATGTCGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | RACE-oligo(dt)  | GACCACGCGTATCGATGTCGACTTTTTTTTTTTTTTTTT                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | RACE            | GACCACGCGTATCGATGTCGAC                                        |                |

<sup>a</sup>Location of the 5′ nucleotide on the SVV genome (GenBank Accession No. AF275348) (Gray *et al*, 1995).

<sup>b</sup>Location of the 5' nucleotide with respect to the GFP DNA sequence supplied by Clontech.

<sup>c</sup>Location of the 5' nucleotide with respect to the  $\beta$ -actin cDNA sequence (Nakajima-Iijima *et al*, 1985).

 ${}^{d}N = nucleotide A, G, or C.$ 

## DNA electrophoresis, Southern blotting, and DNA hybridization

PCR and RT-PCR DNA amplification products were resolved by electrophoresis through a 2% agarose gel, electrophoretically transferred to a Zeta-probe membrane (BIO-RAD, Laboratories, Hercules, CA) and hybridized overnight at 42°C to the appropriate <sup>32</sup>P-end-labeled internal oligonucleotide (Table 3). Oligonucleotides were end-labeled with [<sup>32</sup>P]dATP using T4 kinase (Life Technologies, Inc) according to the manufacturer's instructions. Probed Southern blots were processed as described (LaGuardia *et al*, 1999). Images were developed by exposure to a PhosphorImager and analyzed using ImageQuant software (Molecular Dynamics, Inc, Sunnyvale, CA).

| ORF    | Primary       | Nested        | Probe  | Product<br>length  |
|--------|---------------|---------------|--------|--------------------|
| SVV 4  | 4P1/4P2       | 4P3/4P4       | Prb4   | 232 bp             |
| SVV 21 | 21P1/21P2     | 21P3/21P4     | Prb21A | 111 bp             |
|        | 21P5/21P6     | 21P7/21P8     | Prb21B | 172 bp             |
| SVV 28 | 28P1/28P2     | 28P3/28P4     | Prb28  | $230\mathrm{bp}$   |
| SVV 29 | 29P1/28P2     | 29P3/29P4     | Prb29  | $140  \mathrm{bp}$ |
| SVV 40 | 40P1/40P2     | 40P3/40P4     | Prb40  | 323 bp             |
| SVV 62 | 62P1/62P2     | 62P3/62P4     | Prb62  | 207 bp             |
| SVV 63 | 63P1/63P2     | 63P3/63P4     | Prb63  | 219 bp             |
| Actin  | ActP1/ActP2   | _             | PrbAct | 240 bp             |
| (DNA)  |               |               |        | -                  |
| Actin  | ActP1/RACE    | _             | PrbAct | 369 bp             |
| (cDNA) |               |               |        | -                  |
| GFP    | GFP-P1/GFP-P2 | GFP-P3/GFP-P4 | PrbGFP | 184 bp             |

# Preparation of preimmune rabbit IgG and rabbit anti-SVV IgG

Rabbit anti-SVV antiserum was prepared by subcutaneous inoculation of purified SV virions as described for rabbit anti-VZV antiserum (Wroblewska et al, 1982). IgG was prepared from preimmune rabbit serum and rabbit anti-SVV antiserum. One ml of preimmune and hyperimmune sample was passed through a protein A-bead column twice. Beads were washed with 10 column volumes of 100 mM Tris (pH 8.0) and 10 column volumes of 10 mM Tris (pH 8.0) followed by one wash with 0.5 ml  $ddH_2O$ . IgG was eluted stepwise with 500  $\mu$ l of 100 mM glycine (pH 3.0). Eluates were collected in 1.5-ml Eppendorf tubes containing 50  $\mu$ l of 1 M Tris (pH 8.0). IgG-containing fractions were identified by absorbance at 280 nm and pooled. Concentration of the pooled fractions was determined using the BCA protein assay (Pierce, Rockford, IL).

#### Immunohistochemistry

Sections (6–8  $\mu$ m) of frozen monkey ganglia and liver were fixed in cold acetone and stained with hematoxylin and eosin (H&E). Other sections were analyzed by immunohistochemistry with preimmune rabbit IgG, rabbit anti-SVV IgG, or a mouse antineurofilament monoclonal antibody (mAb) (clone N52; SIGMA, St. Louis, MO). The preimmune rabbit IgG and rabbit anti-SVV IgG were preabsorbed twice on BSC-1 cells and twice on acetone-dried uninfected monkey ganglia powder for 1 h at 37°C followed by 20 h at 4°C with mixing. Unless indicated, all incubations were at room temperature. Fixed sections were incubated with a 10% (vol/vol) solution of normal goat serum for 1 h, washed three times with phosphate-buffered saline (PBS), and incubated for 1 h with preimmune rabbit IgG (2  $\mu$ g/ml), rabbit anti-SVV IgG (2  $\mu$ g/ml) or a 1:2500 dilution of mouse anti-neurofilament mAb in PBS. Sections were washed three times with PBS, incubated for 1 h with a 1:500 dilution of goat anti-rabbit IgG (Vector Laboratories, Inc, Burlingame, CA) or a 1:400 dilution

of alkaline phosphatase-conjugated horse anti-mouse IgG in PBS containing 5% normal goat serum and washed three times with PBS. The color reaction was developed for 5–10 min with fresh fuchsin substrate system (code K698; DAKO, Carpinteria, CA). One drop of 125 mM levamisole (Vector Laboratories, Inc) was added to the reaction mix to block endogenous phosphatases. Acetone-fixed SVV-infected and uninfected BSC-1 cells on coverslips were treated identically.

#### Results

Sensitivity of nested PCR used to detect SVV DNA DNA extracted from liver of an SVV-seronegative monkey was spiked with 0, 1, 10, 100, or 1000 copies of the previously described cloned SVV restriction fragments, EcoRI G, Pst N, and EcoRI C (Clarke et al, 1992) to determine the sensitivity of the primer sets used in this study. SVV EcoRI G, Pst N, and EcoRI C contain SVV ORF 4-, 21-, and 63-specific sequences respectively. Liver DNA (0.2  $\mu$ g) from an uninfected monkey was mixed with 0, 1, 10, 100, or 1000 copies of the prior SVV restriction fragments and analyzed by nested PCR using SVV ORF 4-, 21-, or 63-specific primers followed by Southern blot hybridization of nested PCR amplification products (Figure 2). The lower limit of detection was 1 copy using primer sets specific for SVV ORFs 4 or 63, and 10 copies using a primer set specific for SVV ORF 21.

# Sensitivity of the nested RT-PCR procedure used to detect SVV-specific transcripts

Total RNA extracted from ganglia was spiked with 1, 10, 100, 1000, or 10000 copies of *in vitro* synthesized transcripts specific for green fluorescent protein (GFP) to determine the sensitivity of the nested RT-PCR procedure used in this study. The gene that



**Figure 2** Sensitivity of nested PCR used to detect multiple regions of the SVV genome. Southern blot showing detection of 0, 1, 10, 100, and 1000 copies of SVV DNA sequences representing ORFs 4, 21, and 63. One, 10, 100, or 1000 copies of plasmid DNA containing each SVV-specific sequence was mixed with 0.2  $\mu$ g of DNA extracted from the liver of an SVV-seronegative African green monkey. The DNA mixture was analyzed by nested PCR followed by Southern blot hybridization of the amplification products using internal SVV-specific oligonucleotides as described in Materials and methods.



**Figure 3** Sensitivity of nested RT-PCR. Southern blot showing detection of 0, 1, 10, 100, 1000, and 10000 copies of *in vitro* synthesized transcripts specific for green fluorescent protein (GFP). Sensitivity of the nested RT-PCR reaction was determined using ganglionic RNA of an African green monkey spiked with known copies *in vitro* GFP transcripts prior to RT reaction. Each RNA sample was analyzed by nested RT-PCR followed by Southern blot hybridization of the amplification products using an internal GFP-specific oligonucleotide as described in Materials and methods.

encodes GFP was used because of its lack of homology to African green monkey genomic DNA. Therefore, there was no concern that the GFP-specific primers would amplify cellular cDNA sequences. The RNA mixture was analyzed by RT-PCR followed by Southern blot hybridization of the nested amplification product (Figure 3). The RT-PCR detected 10 to 10000 copies of *in vitro* GFP transcripts.

# Detection of SVV DNA sequences in ganglia, lung, and liver

SVV DNA sequences representing at least one of the three ORFs (4, 21, or 63) were detected in ganglia from all monkeys (M1–M12) 10 and 11 days p.i., and 2, 5, 10, and 12 months p.i. (Table 4). DNA sequences representing at least one of the three SVV ORFs (4, 21, or 63) were detected in lung at 10 and 11 days p.i. and 2, 5, and 10 months p.i. (M1–M4, M6–M11; Table 4). SVV DNA sequences were not detected in lung of monkeys M5 and M12 (2 and 12 months p.i.). DNA sequences representing at least one of the three SVV ORFs (4, 21, or 63) were detected in liver of monkeys M1–M10 (10 and 11 days p.i., and 2, 5, and 10 months p.i.); livers from monkeys M11 and M12

were negative for SVV ORFs 4 and 21, respectively (Table 4). SVV ORF 4, 21, and 63 DNA sequences were not detected in ganglia, lung, and liver from an SVVseronegative adult African green monkey (Table 4). Actin sequences were detected in all DNA.

#### Detection of SVV-specific transcripts in ganglia, lung. and liver

SVV IE ORF 4-, 62-, 63-, E ORF 21-, 28-, 29-, or L ORF 40-specific transcripts were detected in ganglia, lung, and liver of 11 SVV-infected monkeys (M2-M12) at 11 days, 2, 5, 10, and 12 months p.i. (Tables 5-8). SVV-IE ORF 4-, 62-, 63-, E ORF 21-, 28-, 29-, and L ORF 40-specific were not detected in RNA extracted from ganglia, lung, or liver of an SVV-seronegative monkey (Figure 4). We analyzed the RNA extracted from the monkey tissues using RT followed by nested PCR and Southern blot hybridization. The strong intensity of the bands obtained after hybridization of the nested RT PCR product indicated that the detection of SVV transcripts was not due to a low level of false starts that could have produced partial RNAs. Actin-specific transcripts were detected in all RNA samples from liver and lung.

 $\label{eq:table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_$ 

|                  | Sacrificed<br>(time p.i.) |        | Ganglia |    |    | Lung |    | Liver |    |    |
|------------------|---------------------------|--------|---------|----|----|------|----|-------|----|----|
| Monkey           |                           | 4      | 21      | 63 | 4  | 21   | 63 | 4     | 21 | 63 |
| SVV-seronegative |                           | _      | _       | _  | _  | _    | _  | _     | _  | _  |
| M1               | 10 days                   | $nd^a$ | nd      | +  | nd | nd   | +  | nd    | nd | +  |
| M2               | 11 days                   | +      | +       | +  | +  | +    | +  | +     | +  | +  |
| M3               | 2 mo                      | nd     | +       | nd | nd | +    | nd | nd    | +  | nd |
| M4               | 2 mo                      | +      | +       | +  | +  | +    | +  | _     | +  | +  |
| M5               | 2 mo                      | nd     | +       | nd | nd | _    | nd | nd    | +  | nd |
| M6               | 5 mo                      | +      | +       | +  | +  | +    | +  | _     | +  | _  |
| M7               | 5 mo                      | +      | +       | nd | _  | +    | nd | +     | +  | nd |
| M8               | 5 mo                      | +      | +       | +  | +  | +    | +  | _     | +  | _  |
| M9               | 10 mo                     | +      | +       | +  | +  | +    | +  | _     | +  | _  |
| M10              | 10 mo                     | +      | +       | nd | _  | +    | _  | +     | +  | nd |
| M11              | 10 mo                     | +      | +       | nd | _  | nd   | +  | _     | nd | nd |
| M12              | 12 mo                     | nd     | +       | +  | nd | _    | nd | nd    | _  | nd |

and = not done.

| Table 5  | Detection of SVV   | ORF- and       | actin-specific | transcripts in a | nultipl | e tissues | by nested | I RT-PCR | after int | ratrachea | l inocul | lation of |
|----------|--------------------|----------------|----------------|------------------|---------|-----------|-----------|----------|-----------|-----------|----------|-----------|
| adult Af | rican green monkey | vs with $10^3$ | –10⁴ PFU of S  | VV               | 1       |           | 5         |          |           |           |          |           |

|       |                        | Gai         | nglia       |             | Lu                | ng |    | Liver |           |    |    |    |
|-------|------------------------|-------------|-------------|-------------|-------------------|----|----|-------|-----------|----|----|----|
| ORF   | <i>M3</i> <sup>a</sup> | $M4^{ m a}$ | $M5^{ m a}$ | $M2^{ m b}$ | <i>M3</i>         | M4 | M5 | M2    | <i>M3</i> | M4 | M5 | M2 |
| IE 4  | +                      | +           | +           | +           | $\mathbf{nd}^{c}$ | nd | nd | +     | nd        | nd | nd | +  |
| IE 62 | +                      | +           | +           | +           | nd                | nd | nd | +     | nd        | nd | nd | +  |
| IE 63 | +                      | +           | +           | +           | _                 | _  | _  | +     | nd        | _  | +  | +  |
| E 21  | _                      | +           | +           | +           | nd                | nd | nd | +     | nd        | nd | nd | +  |
| E 28  | _                      | +           | +           | +           | _                 | _  | _  | +     | nd        | _  | +  | +  |
| E 29  | +                      | +           | +           | +           | _                 | _  | _  | +     | nd        | _  | +  | +  |
| L 40  | _                      | _           | _           | +           | _                 | _  | _  | +     | nd        | _  | +  | +  |
| Actin | +                      | +           | +           | +           | +                 | +  | +  | +     | nd        | +  | +  | +  |

<sup>a</sup>2 months, <sup>b</sup>11 days p.i.

 $^{c}$ nd = not done.

| ORF   |                        | Gai         | nglia       |                   |                            | Lu        | ng        | Liver |    |            |           |    |
|-------|------------------------|-------------|-------------|-------------------|----------------------------|-----------|-----------|-------|----|------------|-----------|----|
|       | <i>M6</i> <sup>a</sup> | $M7^{ m a}$ | <i>M8</i> ª | $M2^{\mathrm{b}}$ | <i>M6</i>                  | <i>M7</i> | <i>M8</i> | M2    | M6 | <i>M</i> 7 | <i>M8</i> | M2 |
| IE 4  | +                      | +           | +           | +                 | $\mathrm{nd}^{\mathrm{c}}$ | nd        | nd        | +     | nd | nd         | nd        | +  |
| IE 62 | +                      | +           | +           | +                 | nd                         | nd        | nd        | +     | nd | nd         | nd        | +  |
| IE 63 | +                      | +           | +           | +                 | _                          | _         | _         | +     | _  | +          | _         | +  |
| E 21  | +                      | +           | +           | +                 | nd                         | nd        | nd        | +     | nd | nd         | nd        | +  |
| E 28  | +                      | +           | +           | +                 | _                          | _         | _         | +     | _  | +          | _         | +  |
| E 29  | +                      | +           | +           | +                 | _                          | _         | _         | +     | _  | +          | _         | +  |
| L 40  | +                      | +           | +           | +                 | _                          | _         | _         | +     | _  | +          | _         | +  |
| Actin | +                      | +           | +           | +                 | +                          | +         | +         | +     | nd | +          | nd        | +  |

a5 months, b11 days p.i. cnd = not done.

Table 7 Detection of SVV ORF- and actin-specific transcripts in multiple tissues by nested RT-PCR after intratracheal inoculation of adult African green monkeys with 10<sup>3</sup>-10<sup>4</sup> pfu of SVV

| Ganglia |                   |                    |                         |                    |             | Lung |                            |     |     |    |    | Liver |     |     |    |  |
|---------|-------------------|--------------------|-------------------------|--------------------|-------------|------|----------------------------|-----|-----|----|----|-------|-----|-----|----|--|
| ORF     | $M9^{\mathrm{a}}$ | $M10^{\mathrm{a}}$ | <i>M11</i> <sup>a</sup> | $M12^{\mathrm{b}}$ | <i>M2</i> ° | M9   | M10                        | M11 | M12 | M2 | M9 | M10   | M11 | M12 | M2 |  |
| IE 4    | +                 | +                  | +                       | +                  | +           | +    | $\mathbf{nd}^{\mathrm{d}}$ | +   | _   | +  | nd | _     | nd  | _   | +  |  |
| IE 62   | +                 | +                  | _                       | +                  | +           | _    | nd                         | _   | nd  | +  | nd | _     | nd  | nd  | +  |  |
| IE 63   | +                 | +                  | +                       | +                  | +           | +    | nd                         | +   | nd  | +  | nd | +     | nd  | nd  | +  |  |
| E 21    | +                 | +                  | +                       | +                  | +           | +    | nd                         | +   | nd  | +  | nd | +     | nd  | nd  | +  |  |
| E 28    | +                 | +                  | +                       | +                  | +           | _    | nd                         | _   | _   | +  | nd | _     | nd  | _   | +  |  |
| E 29    | +                 | +                  | +                       | +                  | +           | +    | nd                         | +   | _   | +  | nd | +     | nd  | _   | +  |  |
| L 40    | +                 | +                  | +                       | +                  | +           | _    | nd                         | _   | _   | +  | nd | _     | nd  | _   | +  |  |
| Actin   | +                 | +                  | +                       | +                  | +           | +    | nd                         | +   | +   | +  | nd | +     | nd  | +   | +  |  |

<sup>a</sup>10 months, <sup>b</sup>12 months, <sup>c</sup>11 days p.i.

 $^{d}$ nd = not done.

Table 8 Detection of SVV ORF-specific transcripts in ganglia, lung, or liver in SVV-infected adult African green monkeys 2, 5, 10, and 12 months p.i.

|       |      | Gan | glia |     |                            | Lu  | ng  |     | Liver |     |     |     |
|-------|------|-----|------|-----|----------------------------|-----|-----|-----|-------|-----|-----|-----|
| ORF   | 2    | 5   | 10   | 12  | 2                          | 5   | 10  | 12  | 2     | 5   | 10  | 12  |
| IE 4  | 3/3ª | 3/3 | 3/3  | 1/1 | $\mathrm{nd}^{\mathrm{b}}$ | nd  | 2/2 | 0/1 | nd    | nd  | 0/1 | 0/1 |
| IE 62 | 3/3  | 3/3 | 2/3  | 1/1 | nd                         | nd  | 0/2 | nd  | nd    | nd  | 0/1 | nd  |
| IE 63 | 3/3  | 3/3 | 3/3  | 1/1 | 0/3                        | 0/3 | 2/2 | nd  | 1/2   | 1/3 | 1/1 | nd  |
| E 21  | 2/3  | 3/3 | 3/3  | 1/1 | nd                         | nd  | 2/2 | nd  | nd    | nd  | 1/1 | nd  |
| E 28  | 2/3  | 3/3 | 3/3  | 1/1 | 0/3                        | 0/3 | 0/2 | 0/1 | 1/2   | 1/3 | 0/1 | 0/1 |
| E 29  | 3/3  | 3/3 | 3/3  | 1/1 | 0/3                        | 0/3 | 2/2 | 0/1 | 1/2   | 1/3 | 1/1 | 0/1 |
| L 40  | 0/3  | 3/3 | 3/3  | 1/1 | 0/3                        | 0/3 | 0/2 | 0/1 | 1/2   | 1/3 | 0/1 | 0/1 |

<sup>a</sup>Number of animals positive/number analyzed.

 $^{b}$ nd = not done.



**Figure 4** Detection of actin and SVV ORF 4-, 21-, 28-, 29-, 40-, 62-, and 63-specific transcripts in multiple monkey tissues of adult African green monkeys inoculated intratracheally with 10<sup>3</sup> pfu of SVV and sacrificed at 11 days or 10 months p.i. No SVV-specific transcripts were detected in multiple tissues from an adult SVV-seronegative African green monkey. Total RNA extracted from each tissue was analyzed by RT-PCR followed by Southern blot hybridization of nested PCR amplification products using internal actin and SVV-specific oligonucleotides as described in Materials and methods.

Actin RT-PCR was not performed on the RNA from ganglia since most of them were positive for SVV-specific transcripts which indicated the presence of amplifiable RNA. No actin- or SVV-specific amplification products were detected in reactions containing RNA that had not been reverse-transcribed.

**Eleven days p.i.** SVV IE ORF 4-, 62-, 63-, E ORF 21-, 28-, 29-, and L ORF 40-specific transcripts were detected in ganglia, lung, and liver of monkey M2 (Figure 4; Tables 5–8).

**Two months p.i.** In monkeys M3–M5, SVV IE ORF 4-, 62-, 63-, and E ORF 29-specific transcripts were detected in ganglia from all three animals. SVV transcripts representing E ORFs 21 and 28 were detected in ganglia from two of three animals. No L ORF 40-specific transcripts were detected in any ganglia, and no IE, E, or L gene transcripts were detected in lung from any of the 3 monkeys. SVV IE ORF 63-, E ORF 28-, 29-, and L ORF 40-specific transcripts were detected in the liver of monkey M5 (Tables 5 and 8).

**Five months p.i.** In monkeys M6–M8, SVV IE ORF 4-, 62-, 63-, E ORF 21-, 28-, 29-, and L ORF 40-specific transcripts were detected in ganglia from all three monkeys. No IE, E, or L gene transcripts were

detected in RNA from lung of any monkey, or in RNA from liver of monkeys M6 and M8. SVV IE ORF 63-, E ORF 28-, 29-, and L ORF 40-specific transcripts were detected in the liver of monkey M7 (Tables 6 and 8).

**Ten months p.i.** In monkeys M9–M11, SVV IE ORF 4-, 63-, E ORF 21-, 28-, 29-, and L ORF 40-specific transcripts were detected in ganglia from all three monkeys. IE ORF 62 transcripts were detected in ganglia of monkeys M9 and M10, but not in ganglia of M11. In the lung of monkeys M9 and M11, SVV transcripts representing IE ORFs 4 and 63 and E ORFs 21 and 29, but not SVV IE ORF 62-, E ORF 28- or L ORF 40-specific transcripts, were detected. SVV IE ORF 63- and E ORF 21- and 29-specific transcripts were detected in liver of monkey M10, but not SVV IE ORF 4-, 62-, E ORF 28-, or L ORF 40-specific transcripts (Figure 4; Tables 7 and 8). RNAs from the lung of monkey M10 and livers of monkeys M9 and M11 were not analyzed.

**Twelve months p.i.** In monkey M12, SVV IE ORF 4-, 62-, 63-, E ORF 21-, 28-, 29-, and L ORF 40-specific transcripts were detected in ganglia. No SVV IE ORF 4-, E ORF 28- or 29-, or L ORF 40-specific transcripts were detected in lung or liver (Tables 7 and 8).

Although we did not analyze every tissue from every monkey with all SVV ORFs, the data indicate that intratracheal inoculation of SVV in African green monkeys results in the presence of viral DNA and transcription of multiple viral genes in many tissues for months after experimental infection.

Immunohistochemistry and immunocytochemistry

Serial sections (6–8  $\mu$ m) of frozen liver from an SVVseronegative monkey and monkey M1 (10 days p.i.) were examined for viral antigens. SVV-specific antigens were detected throughout liver from monkey M1 (Figure 5A), in SVV-infected cells in tissue culture, but not in liver from an uninfected monkey (Figure 5B) or in uninfected cells in culture (data not shown). No staining was observed on adjacent sections of each liver sample, uninfected BSC-1, or SVV-infected cells using control preimmune rabbit IgG (data not shown).

Serial frozen sections of ganglia from two SVVseronegative monkeys and SVV-infected monkeys M1 (10 days p.i.) and M12 (12 months p.i.) were stained with H&E and analyzed by immunohistochemistry using anti-SVV IgG. No inflammation or inclusions were seen in the ganglia of monkey M1 (Figure 6A), in ganglia, lung, and liver from two SVVseronegative monkeys, or in ganglia from monkey M12 (data not shown). SVV-specific antigens were detected by immunohistochemistry in six different sections of a dorsal root ganglion from monkey M1 (Figure 6B), but not in one section of a trigeminal ganglion from an SVV-seronegative monkey (data not shown), or in two sections of a ganglion of monkey M12, even though adjacent sections from the same ganglion of M12 were positive for SVV DNA by PCR (data not shown). No staining was observed on adjacent



Figure 5 Immunohistochemical analysis of liver from SVVinfected (M1) and uninfected monkey, 10 days p.i. Indirect alkaline phosphatase staining using a 1:5000 dilution of rabbit anti-SVV IgG. (A) Note numerous dark-staining cells containing SVV-specific antigen in SVV-infected liver. (B) No SVV-specific antigen was observed in liver from an uninfected monkey.  $216 \times .$ 

ganglionic sections of each sample using control preimmune rabbit IgG.

Staining of adjacent ganglia sections with an antineurofilament mAb revealed neurofilament protein in the cytoplasm of ganglionic cells of all monkeys tested: M1 (10 days p.i.) (Figure 6C), M12 (12 months p.i.), and an SVV-seronegative monkey (data not shown).

Overall, SVV DNA sequences were detected in all ganglia up to 12 months p.i. and in most lungs and livers for 10 months p.i. (Table 4). SVV-specific transcripts representing all gene classes were detected in ganglia 5, 10, and 12 months p.i. SVV-specific IE, E, and L transcripts were also detected 2 and 5 months p.i. in liver, and SVV-specific IE and E transcripts in liver and lung 10 months p.i. SVV-specific antigens were detected in liver and ganglia 10 days p.i., but not in ganglia 12 months p.i.

### Discussion

Herein, we analyzed the molecular events after resolution of acute SVV infection in monkeys produced by intratracheal inoculation. A particular advantage

Simian varicella virus persists after experimental infection  $\underline{\mathsf{TM}}$  White  $\mathit{et al}$ 



Figure 6 Dorsal root ganglion of SVV-infected monkey M1 (10 days p.i.). (A) Hematoxylin and eosin-stained section showing a large neuron (closed arrow) and smaller non-neuronal cells (open arrow). No inflammation was seen. (B) Indirect alkaline phosphatase staining with 1:5000 dilution of rabbit anti-SVV IgG. Note dark SVV-specific antigen staining in area around a neuron (closed arrow). (C) Indirect alkaline phosphatase staining on an adjacent ganglia section with 1:2500 dilution of mouse anti-neurofilament mAb. Note dark staining of neurofilament protein in cytoplasm of ganglionic cells (closed arrow). 216×.

of our model system is that SVV-infected tissues were harvested immediately after death, thus obviating concerns about postmortem reactivation of virus. We analyzed multiple tissues for the presence of SVVspecific DNA and RNA. To study as many animals as possible virologically (while recognizing that statistical significance could not be achieved), we included eight monkeys that had been treated with short courses of different antiviral agents as presented in Table 1. The short course of antiviral treatments given to monkeys was part of different studies unrelated to the pathogenesis of SVV and was not an attempt by us to drive virus back into the latent state. In fact, none of the short antiviral treatments affected SVV transcription. Nevertheless, our model developed herein could still be used to determine if intravenous antiviral therapy followed by prolonged oral antiviral therapy might effectively reduce viral replication. For example, in humans with zoster sine herpete (radicular pain without rash caused by VZV), oral acyclovir failed to help patients, whereas intravenous acyclovir cured these patients and cleared their blood and cerebrospinal fluid of VZV (Gilden *et al*, 1994).

Previously, our laboratory had demonstrated the presence of SVV ORF 21-specific transcripts in pooled ganglia from 12 monkeys sacrificed 14 months after experimental infection (Clarke *et al*, 1996). Herein, we expanded this analysis to include more monkeys, more viral genes, more organs, and more intervals after infection. Individual animals were analyzed for SVV DNA and for SVV ORF 4-, 21-, 28-, 29-, 40-, 62-, and 63-specific transcripts, representing each gene class: IE, E, and L. SVV ORFs 21, 29, 62, and 63 are homologous to VZV-specific transcripts that have been detected in latently infected human ganglia (Cohrs *et al*, 1995, 1996). In addition to SVV-specific transcripts, sections of ganglia from two monkeys were analyzed for SVV-specific antigens.

SVV DNA sequences were detected in lung and liver up to 10 months p.i. and in all ganglia up to 12 months p.i. from SVV-infected animals, but not in lung, liver, and ganglia from an SVV-seronegative monkey. Since all TG and DRG from individual animals were pooled before nucleic acid extraction, while only small portions of each lung and liver were used, it is possible that lack of detection of SVV DNA in lung or liver 12 months p.i. reflects random sampling of viscera. We previously showed that most if not all of the SVV genome is present in ganglia and in adrenal gland years after experimental infection with SVV (Mahalingam et al, 1992, 1998). Interestingly, all regions of the SVV genome that were examined were detected in ganglia months after experimental infection; in contrast, not all regions of the SVV genome were present in some lung and liver samples at the same intervals. Thus, the SVV genome may be incomplete in these lung and liver samples. An incomplete alphaherpesvirus genome, that of herpes simplex virus (HSV), has been detected in nonganglionic sites such as brain years after primary infection (Fraser et al, 1981). Alternatively, the amount of SVV DNA in some lung and liver samples might have been below the limit of detection of the primer pairs used in the assay. Our results show that the lower limit of detection of the nested PCR used to amplify SVV ORF 4- and 63-specific DNA was 1 copy compared to 10 copies for SVV ORF 21-specific DNA. Thus, two of the three primer sets used in our PCR would detect a single copy of SVV DNA, and the third primer set would require 10 copies for detection.

We also showed that SVV is transcriptionally active in infected ganglia and other organs months after experimental infection. Nested PCR and RT-PCR were used because of their high level of sensitivity, thus ensuring that all negative samples were truly negative. Regarding RT-PCR, because oligodT primers were used to reverse transcribe mRNA, only polyadenylated transcripts would have been detected by our RT-PCR. Although no SVV-specific transcripts were detected in ganglia, lung, and liver RNA from an SVV-seronegative African green monkey, SVV-specific transcripts representing IE and E, but not L, gene classes were detected in ganglia from all monkeys 2 months p.i. SVV transcripts representing IE, putative E, and L gene classes were detected in all ganglia 5, 10, and 12 months p.i., respectively. Ganglia from one monkey 10 months p.i. revealed no SVV IE ORF 62-specific transcripts. Either ORF 62 was not transcribed in this ganglion or perhaps it was not polyadenylated and thus not detected after reverse transcription using an oligo(dT) primer. VZV ORF 62-specific transcripts expressed in latently infected human ganglia are not polyadenylated (Cohrs et al, 1996), and this also might be the case for SVV ORF 62 in some of the monkey ganglia.

IE, E, and L transcripts were detected in liver 2 and 5 months p.i., but not in lung from the same monkeys. In lung and liver, restricted viral transcription was observed 10 months p.i., with the detection of some IE and E transcripts, but not L transcripts. In one monkey sacrificed 10 months p.i., IE ORF 4 transcripts were detected in lung, but DNA representing ORF 4 was not detected. Although surprising, this could reflect a greater abundance of transcripts compared to the copy number of DNA below our limit of detection. No SVV DNA or SVV-specific transcripts were detected in lung and liver 12 months p.i. Limited transcription of other alphaherpesviruses in nonganglionic tissue has been reported. For example, the latency-associated transcripts (LATs) of herpes simplex virus have been found in cornea and brain (Cook et al, 1991; Kaye et al, 1991; Abghari et al, 1992; Lynas et al, 1993; Wharton et al, 1995), and bovine herpesvirus LATs were detected in lymphoreticular tissue of infected calves (Winkler et al, 2000) months after primary infection.

Our detection of SVV IE, E, and L transcripts in non-ganglionic tissue, a unique finding for varicella, prompted a search for SVV-specific proteins. We found SVV-specific antigen in ganglia and liver 10 days p.i., consistent with that reported by Dueland et al (1992). However, despite the detection of multiple SVV-specific transcripts in ganglia 12 months p.i., no SVV-specific proteins were detected in a SVV DNA-positive ganglion from the same monkey. In fact, no SVV-specific protein was detected in any ganglia examined 12 months p.i. While conclusions about the extent of SVV translation in monkeys months after experimental infection await analysis of additional ganglia, SVV-specific protein is either not present or is present at low abundance, consistent with the need to use nested RT-PCR to detect SVV-specific transcripts in ganglia at 12 months p.i. It is also possible that polyclonal anti-SVV IgG does not contain sufficient SVV-specific antibodies to detect low-abundance proteins in ganglia 12 months p.i. The use of SVV ORF-specific monoclonal or monospecific polyclonal antibodies may enhance the detection of SVV antigens in ganglia.

Because our monkeys were inoculated intratracheally with varicella virus, an exact comparison of our model to the pathogenesis of naturally occurring primary VZV infection in humans is impossible. Nonetheless, numerous virological differences are immediately obvious. First, in humans latently infected with VZV, only ganglia contain VZV compared to multiple organs of monkeys that contain SVV months after intratracheal inoculation. Second, the results of multiple investigations indicate that the extent of varicella transcription in latently infected humans appears to be limited to VZV genes 21, 29, 62, and 63, and translation is restricted to VZV gene 63 protein (Mahalingam et al, 1996; Kennedy et al, 2000). There is one outstanding, yet to be confirmed, report on the detection of VZV-specific proteins encoded by multiple viral genes in latently infected human ganglia (Lungu et al, 1998). Although further studies are necessary to determine the exact extent of varicella gene expression in ganglia, the most accurate comparison of VZV latency in humans to SVV in latency in monkeys will come from the study of tissues from monkeys with naturally acquired chickenpox.

Our only other study that experimentally infected monkeys with SVV both intratracheally and intravenously did reveal that multiple organs, including ganglia, became infected hematogenously before the rash of chickenpox developed (Mahalingam *et al*, 2001). However, those monkeys were sacrificed at earlier times after experimental infection, and no conclusion can be drawn about varicella latency to compare with the data from humans.

SVV has been recovered from viscera and on rare occasions from ganglia 2–10 days p.i. (Wenner *et al*, 1977; Iltis *et al*, 1982), but there are no reports of virus isolation from SVV-infected monkey tissues at later times. Because SVV has not been isolated from monkey tissue months after infection, and because the cell-associated nature of varicella virus prohibits its efficient isolation (Plotkin *et al*, 1977), we did not attempt to isolate SVV by cocultivation of ganglionic and nonganglionic cells with indicator cells. However, since our findings reveal a greater presence and transcription of virus than is seen during varicella latency in humans, our future studies will attempt to isolate virus as well as to identify virus particles by electron microscopy.

The detection of transcripts representing all gene classes, particularly L SVV transcripts, in multiple ganglia and viscera from most monkeys sacrificed 2– 12 months p.i. indicates possible viral DNA replication. The expression of most L herpesvirus genes is thought to depend on functional IE viral proteins and virus DNA replication. However, it is unknown if the extensive SVV-specific transcription observed in ganglia 2, 5, 10, and 12 months p.i. is regulated by viral proteins present at undetectable levels or by host cell-specific proteins. Furthermore, detection of SVV DNA and SVV-specific transcripts in lung or liver or both at multiple times p.i. indicates that SVV is transcriptionally active months after primary infection in nonganglionic tissues. Limited SVV transcription in these tissues may reflect a mechanism used by the virus to evade the host immune system. Alternatively, lung and liver cells that harbor SVV may be unable to support productive infection.

SVV transcription was limited to IE and E genes in ganglia of monkeys sacrificed 2 months p.i., which exhibited less severe rash and viremia during acute SVV infection compared to monkeys sacrificed 5, 10, and 12 months p.i., which expressed all three SVV gene classes. More animals inoculated under similar experimental conditions will need to be analyzed before further correlations can be made.

The discovery of SVV DNA and extensive viral transcription in ganglia and viscera months after experimental infection was unexpected. If SVV DNA had been found only in ganglia, and if viral gene expression had been restricted to 4-5 genes as in human ganglia latently infected with VZV, then two of the criteria for varicella latency would be satisfied. However, our detection of viral DNA and IE, E, and L transcripts in multiple tissues months after experimental infection indicates that this is not varicella latency. Our findings probably reflect the high virus load delivered intratracheally compared to naturally acquired varicella infection. To study SVV latency will require a careful virological examination of ganglia and other tissues from SVVseropositive monkeys months after naturally acquired infection.

Overall, the model described herein underlines the importance of route of inoculation and quantity of viral inoculum in determining the virological findings after experimental infection. In addition, our model of SVV infection has the potential to determine if treatment with antiviral agents, at a time when varicella gene expression is high, can clear tissue of virus.

#### References

- Abghari SZ, Stulting RD, Petrash JM (1992). Detection of herpes simplex virus type 1 latency-associated transcripts in corneal cells of inbred mice by in situ hybridization. *Cornea* **11**: 433–438.
- Bergen RE, Diaz PS, Arvin AM (1990). The immunogenicity of the Oka/Merck varicella vaccine in relation to infectious varicella-zoster virus and relative viral antigen content. J Infect Dis **162**: 1049–1054.
- Clarke P, Brunschwig A, Gilden DH (1993). DNA sequence of a simian varicella virus gene that encodes a homologue of varicella-zoster virus IE62 and herpes simplex virus ICP4. *Virology* **197**: 45–52.
- Clarke P, Matlock WL, Beer T, Gilden DH (1996). A simian varicella virus (SVV) homolog to varicella-zoster gene 21 is expressed in monkey ganglia latently infected with SVV. *J Virol* **70**: 5711–5715.
- Clarke P, Rabkin SD, Inman MV, Mahalingam R, Cohrs R, Wellish M, Gilden DH (1992). Molecular analysis of simian varicella virus DNA. *Virology* **190**: 597–605.
- Clarkson MJ, Thrope E, McCarthy K (1967). A virus disease of captive vervet monkeys (*Cercopithecus aethiops*) caused by a new herpesvirus. *Arch Gesamte Virusforsch* **22**: 219–234.
- Cohrs R, Barbour M, Gilden DH (1996). Varicella-zoster virus (VZV) transcription during latency in human ganglia: Detection of transcripts mapping to genes 21, 29, 62 and 63 in a cDNA library enriched for VZV RNA. *J Virol* **70**: 2789–2796.
- Cohrs RJ, Barbour MB, Mahalingam R, Wellish M, Gilden DH (1995). Varicella-zoster virus (VZV) transcription during latency in human ganglia: prevalence of VZV gene 21 transcripts in latently infected human ganglia. J Virol 69: 2676–2678.
- Cook SD, Hill JM, Lynas C, Maitland NJ (1991). Latencyassociated transcripts in corneas and ganglia of HSV-1 infected rabbits. *Br J Ophthal* **75:** 644–648.
- Davison AJ, Scott JE (1986). The complete DNA sequence of varicella-zoster virus. *J Gen Virol* **67**: 1759–1816.
- Defechereux P, Melen L, Baudoux L, Merville-Louis M, Rentier B, Piette J (1993). Characterization of the regulatory functions of varicella-zoster virus open reading frame 4 gene product. *J Virol* **67**:4379–4385.
- Dueland AN, Martin JR, Devlin ME, Wellish M, Mahalingam R, Cohrs R, Soike KF, Gilden DH (1992). Acute simian varicella infection: clinical, laboratory, pathologic, and virologic features. *Lab Invest* **66**: 762– 773.
- Felser JM, Kinchington PR, Inchauspe G, Straus SE, Ostrove JM (1988). Cell lines containing varicella-zoster virus open reading frame 62 and expressing the "IE" 175 protein complement ICP4 mutants of herpes simplex virus type I. J Virol 62: 2076–2082.
- Fletcher TM, Gray WL (1993). DNA sequence and genetic organization of the unique short ( $U_s$ ) region of the simian varicella virus genome. *Virology* **193**: 762–773.
- Fraser NW, Lawrence WC, Wroblewska Z, Gilden DH, Koprowski H (1981). Herpes simplex type 1 DNA in human brain tissue. *Proc Natl Acad Sci USA* **78**: 6461– 6465.
- Gilden DH, Wright RR, Schneck SA, Swaltney JM Jr, Mahalingam R (1994). Zoster sine herpete, a clinical variant. Ann Neurol 35: 530–533.

- Gray WL, Gusick NJ, Ek-Kommonen C, Kempson SE, Fletcher TM III (1995). The inverted repeat regions of the simian varicella virus and varicella-zoster virus genomes have a similar + genetic organization. *Virus Res* **39**: 181–193.
- Gray WL, Oakes JE (1984). Simian varicella virus DNA shares homology with human varicella-zoster virus DNA. *Virology* **136**: 241–246.
- Gray WL, Starnes B, White MW, Mahalingam R (2001). The DNA sequence of the simian varicella virus genome. *Virology* **284:** 123–130.
- Iltis JP, Aarons MC, Castellano GA, Madden DL, Sever JL, Curfman BL, London WT (1982). Simian varicella virus (delta herpesvirus) infection of patas monkeys leading to pneumonia and encephalitis. *Proc Soc Exp Biol Med* **169:** 266–279.
- Jackers P, Defechereux P, Baudoux L, Lambert C, Massaer M, Merville-Louis MP, Rentier B, Piette J (1992). Characterization of regulatory functions of the varicellazoster virus gene 63-encoded protein. J Virol 66: 3899– 3903.
- Kaye SB, Lynas C, Patterson A, Risk JM, McCarthy K, Hart CA (1991). Evidence for herpes simplex viral latency in the human cornea. Br J Ophthal 75: 195–200.
- Kennedy PGE, Grinfeld E, Bell JE (2000). Varicella-zoster virus gene expression in latently infected and explanted human ganglia. J Virol 74: 11893–11898.
- Kinchington PR, Inchauspe G, Subak-Sharpe JH, Robey F, Hay J, Ruyechan WT (1988). Identification and characterization of a varicella-zoster virus DNA-binding protein by using antisera directed against a predicted synthetic oligopeptide. J Virol 62: 802–809.
- LaGuardia JJ, Cohrs RJ, Gilden DH (1999). Prevalence of varicella-zoster virus DNA in dissociated human trigeminal ganglion neurons and nonneuronal cells. *J Virol* **73**: 8571–8577.
- Lungu O, Panagiotidis CA, Annuziato PW, Gershon A, Silverstein SJ (1998). Aberrant intracellular localization of varicella-zoster virus regulatory proteins during latency. *Proc Natl Acad Sci USA* **93**: 2122– 2124.
- Lynas C, Hill TJ, Maitland NJ, Love S (1993). Latent infection with the MS strain of herpes simplex virus type 2 in the mouse following intracerebral inoculation. *J Neuro Sci* **120**: 107–114.
- Mahalingam R, Clarke P, Wellish M, Dueland AN, Soike KF, Gilden DH, Cohrs R (1992). Prevalence and distribution of latent simian varicella virus DNA in monkey ganglia. *Virology* **188**: 193–197.
- Mahalingam R, Lasher R, Wellish M, Cohrs RJ, Kleinschmidt-DeMasters BK, Gilden DH (1998). Localization of varicella-zoster virus gene 21 protein in virus-infected cells in culture. *J Virol* **72**: 6832– 6837.
- Mahalingam R, Smith D, Wellish M, Wolf W, Dueland AN, Cohrs R, Soike K, Gilden DH (1991). Simian varicella virus DNA in dorsal root ganglia. *Proc Natl Acad Sci* USA 88: 2750–2752.
- Mahalingam R, Wellish M, Cohrs R, Debrus S, Piette J, Rentier B, Gilden DH (1996). Expression of protein encoded by varicella-zoster virus open reading frame 63 in latently infected human ganglionic neurons. *Proc Natl Acad Sci USA* **93**: 2122–2124.

- Mahalingam R, Wellish M, Soike K, White T, Kleinschmidt-DeMasters BK, Gilden DH (2001). Simian varicella zoster virus infects ganglia before rash in experimentally infected monkeys. *Virology* **279**: 339–342.
- Mahalingam R, Wellish M, Wolf W, Dueland AN, Cohrs R, Vafai A, Gilden DH (1990). Latent varicella-zoster viral DNA in human trigeminal and thoracic ganglia. *N Engl J Med* **323**: 627–631.
- Meier JL, Holman RP, Croen KD, Smialek JE, Strauss SE (1993). Varicella-zoster virus in human trigeminal ganglia. *Virology* **193**: 193–200.
- Nakajima-Iijima S, Hamada H, Reddy P, Kakunaga T (1985). Molecular structure of the human cytoplasmic  $\beta$ -actin gene: interspecies homology of sequences in the introns. *Proc Natl Acad Sci USA* **82:** 6133–6137.
- Padovan D, Cantrell CA (1986). Varicella-like herpesvirus infections of non-human primates. *Lab Anim Sci* **36**: 7–13.
- Plotkin SA, Stein S, Snyder M, Immesoete P (1977). Attempts to recover varicella virus from ganglia. *Ann Neurol* **2:** 249.

- Soike KF, Rangan SRS, Gerone PJ (1984). Viral disease models in primates. *Adv Vet Sci Comp Med* **28**: 151–199.
- Wenner HA, Abel D, Barrick S, Seshumurty P (1977). Clinical and pathogenetic studies of medical lake macaque virus infections in cynomolgus monkeys (simian varicella). J Infect Dis 135: 611–622.
- Wharton SB, Meyers NL, Nass AA (1995). Experimental herpes simplex virus type 1 (HSV-1) infection of the spinal cord and dorsal root ganglia. *Neuropathol Appl Neurobiol* **21**: 228–237.
- White TM, Mahalingam R, Kolhatkar G, Gilden DH (1997). Identification of simian varicella virus homologues of varicella zoster virus genes. *Virus Genes* **15**: 265– 269.
- Winkler MT, Doster A, Jones C (2000). Persistence and reactivation of bovine herpesvirus 1 in the tonsils of latently infected calves. *J Virol* **74:** 5337–5346.
- Wroblewska Z, Devlin M, Reilly K, van Trieste H, Wellish M, Gilden DH (1982). The production of varicella zoster virus antiserum in laboratory animals. *Arch Virol* **74**: 233–238.